Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2023 Dec 18:2023.12.18.23300126. [Version 1] doi: 10.1101/2023.12.18.23300126

The gut-microbiome in adult Attention-deficit/hyperactivity disorder - A Meta-analysis

Babette Jakobi, Priscilla Vlaming, Danique Mulder, Marta Ribases, Vanesa Richarte, Josep Antoni Ramos-Quiroga, Indira Tendolkar, Philip van Eijndhoven, Janna N Vrijsen, Jan Buitelaar, Barbara Franke, Martine Hoogman, Mirjam Bloemendaal, Alejandro Arias-Vasquez
PMCID: PMC10775329  PMID: 38196604

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition that persists into adulthood in the majority of individuals. While the gut-microbiome seems to be relevant for ADHD, the few publications on gut-microbial alterations in ADHD are inconsistent, in the investigated phenotypes, sequencing method/region, preprocessing, statistical approaches, and findings. To identify gut-microbiome alterations in adult ADHD, robust across studies and statistical approaches, we harmonized bioinformatic pipelines and analyses of raw 16S rRNA sequencing data from four adult ADHD case-control studies (N ADHD =312, N NoADHD =305). We investigated diversity and differential abundance of selected genera (logistic regression and ANOVA-like Differential Expression tool), corrected for age and sex, and meta-analyzed the study results. Converging results were investigated for association with hyperactive/impulsive and inattentive symptoms across all participants. Beta diversity was associated with ADHD diagnosis but showed significant heterogeneity between cohorts, despite harmonized analyses. Several genera were robustly associated with adult ADHD; e.g., Ruminococcus_torques_group (LogOdds=0.17, p fdr =4.42×10 −2 ), which was more abundant in adults with ADHD, and Eubacterium_xylanophilum_group (LogOdds= −0.12, p fdr =6.9 x 10 −3 ), which was less abundant in ADHD. Ruminococcus_torques_group was further associated with hyperactivity/impulsivity symptoms and Eisenbergiella with inattention and hyperactivity/impulsivity (p fdr <0.05). The literature points towards a role of these genera in inflammatory processes. Irreproducible results in the field of gut-microbiota research, due to between study heterogeneity and small sample sizes, stress the need for meta-analytic approaches and large sample sizes. While we robustly identified genera associated with adult ADHD, that might overall be considered beneficial or risk-conferring, functional studies are needed to shed light on these properties.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES