Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Feb;95(2):420–425. doi: 10.1104/pp.95.2.420

Slow-Growth Phenotype of Transgenic Tomato Expressing Apoplastic Invertase 1

Craig D Dickinson 1,2, Teresa Altabella 1,3, Maarten J Chrispeels 1
PMCID: PMC1077547  PMID: 16668000

Abstract

The growth of transgenic tomato (Lycopersicon esculentum) plants that express in their apoplast yeast invertase under the control of the cauliflower mosaic virus 35S promoter is severely inhibited. The higher the level of invertase, the greater the inhibition of growth. A second phenotypic characteristic of these transgenic plants is the development of yellow and necrotic spots on the leaves, and leaf curling. Again the severity of the symptoms is correlated with the level of invertase. These symptoms do not develop in shaded leaves indicating the need for photosynthesis. Keeping the plants in the dark for a prolonged period (24 hours) results in the disappearance of leaf starch from the control plants, but not from the plants with apoplastic invertase. These results are consistent with the interpretation that apoplastic invertase prevents photosynthate export from source leaves and that phloem loading includes an apoplastic step.

Full text

PDF
420

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carlson M., Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. doi: 10.1016/0092-8674(82)90384-1. [DOI] [PubMed] [Google Scholar]
  3. Chrispeels M. J., Boulter D. Control of storage protein metabolism in the cotyledons of germinating mung beans: role of endopeptidase. Plant Physiol. 1975 Jun;55(6):1031–1037. doi: 10.1104/pp.55.6.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delrot S., Bonnemain J. L. Involvement of Protons as a Substrate for the Sucrose Carrier during Phloem Loading in Vicia faba Leaves. Plant Physiol. 1981 Mar;67(3):560–564. doi: 10.1104/pp.67.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geiger D. R., Sovonick S. A., Shock T. L., Fellows R. J. Role of free space in translocation in sugar beet. Plant Physiol. 1974 Dec;54(6):892–898. doi: 10.1104/pp.54.6.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gifford R. M., Thorne J. H., Hitz W. D., Giaquinta R. T. Crop productivity and photoassimilate partitioning. Science. 1984 Aug 24;225(4664):801–808. doi: 10.1126/science.225.4664.801. [DOI] [PubMed] [Google Scholar]
  7. Hitz W. D., Card P. J., Ripp K. G. Substrate recognition by a sucrose transporting protein. J Biol Chem. 1986 Sep 15;261(26):11986–11991. [PubMed] [Google Scholar]
  8. Jones E. W. Proteinase mutants of Saccharomyces cerevisiae. Genetics. 1977 Jan;85(1):23–33. doi: 10.1093/genetics/85.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ow D. W., DE Wet J. R., Helinski D. R., Howell S. H., Wood K. V., Deluca M. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science. 1986 Nov 14;234(4778):856–859. doi: 10.1126/science.234.4778.856. [DOI] [PubMed] [Google Scholar]
  10. Tague B. W., Dickinson C. D., Chrispeels M. J. A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole. Plant Cell. 1990 Jun;2(6):533–546. doi: 10.1105/tpc.2.6.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Voelker T., Sturm A., Chrispeels M. J. Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco. EMBO J. 1987 Dec 1;6(12):3571–3577. doi: 10.1002/j.1460-2075.1987.tb02687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES