Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Feb;95(2):469–476. doi: 10.1104/pp.95.2.469

The Latex of Hevea brasiliensis Contains High Levels of Both Chitinases and Chitinases/Lysozymes 1

Melinda N Martin 1
PMCID: PMC1077554  PMID: 16668007

Abstract

The latex of the commercial rubber tree, Hevea brasiliensis, was fractionated by ultracentrifugation as described by G. F. J. Moir ([1959] Nature 184: 1626-1628) into a top layer of rubber particles, a cleared cytoplasm, and a pellet that contains primarily specialized vacuoles known as lutoids. The proteins in each fraction were resolved by two-dimensional gel electrophoresis. Both the pellet fraction and cleared cytoplasm contained large amounts of relatively few proteins, suggesting that laticifers serve a very specialized function in the plant. More than 75% of the total soluble protein in latex was found in the pellet fraction. Twenty-five percent of the protein in the pellet was identified as chitinases/lysozymes, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of bacterial cell walls. Both the chitinase and lysozyme activities were localized exclusively in the pellet or lutoid fraction. The chitinases/lysozymes were resolved into acidic and basic classes of proteins and further purified. An acidic protein (molecular mass 25.5 kD) represented 20% of the chitinase activity in latex; this protein lacked the low level of lysozyme activity that is associated with many plant chitinases. Six basic proteins, having both chitinase and lysozyme activities in various ratios and molecular mass of 27.5 or 26 kD, were resolved. Two of the basic proteins had very high lysozyme specific activities which were comparable to the specific activities reported for animal lysozymes. Like animal lysozymes, but unlike previously characterized plant chitinases/lysozymes, these basic chitinases/lysozymes were also capable of completely lysing or clearing suspensions of bacterial cell walls. These results suggest that laticifers may serve a defensive role in the plant.

Full text

PDF
469

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  2. Broglie K. E., Gaynor J. J., Broglie R. M. Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6820–6824. doi: 10.1073/pnas.83.18.6820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Glazer A. N., Barel A. O., Howard J. B., Brown D. M. Isolation and characterization of fig lysozyme. J Biol Chem. 1969 Jul 10;244(13):3583–3589. [PubMed] [Google Scholar]
  4. Howard J. B., Glazer A. N. Studies of the physicochemical and enzymatic properties of papaya lysozyme. J Biol Chem. 1967 Dec 25;242(24):5715–5723. [PubMed] [Google Scholar]
  5. Joosten M. H., De Wit P. J. Identification of Several Pathogenesis-Related Proteins in Tomato Leaves Inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-beta-Glucanases and Chitinases. Plant Physiol. 1989 Mar;89(3):945–951. doi: 10.1104/pp.89.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kombrink E., Schröder M., Hahlbrock K. Several "pathogenesis-related" proteins in potato are 1,3-beta-glucanases and chitinases. Proc Natl Acad Sci U S A. 1988 Feb;85(3):782–786. doi: 10.1073/pnas.85.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kush A., Goyvaerts E., Chye M. L., Chua N. H. Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). Proc Natl Acad Sci U S A. 1990 Mar;87(5):1787–1790. doi: 10.1073/pnas.87.5.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Legrand M., Kauffmann S., Geoffroy P., Fritig B. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6750–6754. doi: 10.1073/pnas.84.19.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lotan T., Ori N., Fluhr R. Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell. 1989 Sep;1(9):881–887. doi: 10.1105/tpc.1.9.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mauch F., Hadwiger L. A., Boller T. Antifungal Hydrolases in Pea Tissue : I. Purification and Characterization of Two Chitinases and Two beta-1,3-Glucanases Differentially Regulated during Development and in Response to Fungal Infection. Plant Physiol. 1988 Jun;87(2):325–333. doi: 10.1104/pp.87.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Metraux J. P., Burkhart W., Moyer M., Dincher S., Middlesteadt W., Williams S., Payne G., Carnes M., Ryals J. Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc Natl Acad Sci U S A. 1989 Feb;86(3):896–900. doi: 10.1073/pnas.86.3.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Molano J., Durán A., Cabib E. A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem. 1977 Dec;83(2):648–656. doi: 10.1016/0003-2697(77)90069-0. [DOI] [PubMed] [Google Scholar]
  13. Molano J., Polacheck I., Duran A., Cabib E. An endochitinase from wheat germ. Activity on nascent and preformed chitin. J Biol Chem. 1979 Jun 10;254(11):4901–4907. [PubMed] [Google Scholar]
  14. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  15. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  16. Raikhel N. V., Wilkins T. A. Isolation and characterization of a cDNA clone encoding wheat germ agglutinin. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6745–6749. doi: 10.1073/pnas.84.19.6745. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES