Abstract
Background
Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs.
Results
Soil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs.
Conclusions
Overall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.
Supplementary Information
The online version contains supplementary material available at 10.1186/s40168-023-01719-3.
Keywords: Antarctic Conservation Biogeographic Regions (ACBRs), Antarctic soil microbiome, Biogeography, Microbial diversity, Regionalization, Soils, Bioclimatic variables
Introduction
Antarctica is the coldest, windiest, and driest continent, posing some of the harshest and most challenging conditions for life [1]. The vast majority of the continent is permanently covered by ice, with less than 0.3% of its continental area being ice-free [2]. However, these areas include a wide range of geographical/geological features and a total area of over 20,000 km2 [2–4]. Ice-free areas are typically small exposed islands of land surrounded by ice or ocean, with those hosting most biodiversity mainly located in proximity to the coast along the Antarctic Peninsula and its associated Scotia Arc archipelagoes, and in coastal oases around the edge of the Antarctic continent. They also include the hyperarid deserts of the Victoria Land Dry Valleys (individually the largest ice-free areas in Antarctica), large inland mountain ranges such as the Transantarctic Mountains, and Ellsworth Mountains, and smaller ranges and isolated inland nunataks [5–7]. These systems are generally characterized by exposure to a combination of extreme environmental stresses, including high UV radiation, low water availability, high salinity, low temperatures, and low nutrient availability, posing multiple challenges to life [8].
The Antarctic continent is commonly divided into maritime and continental zones in descriptions of its biodiversity [6, 9, 10]. Under this definition, maritime Antarctica comprises the western coastal regions and offshore islands of the Antarctic Peninsula and the Scotia Arc archipelagoes of the South Shetland, South Orkney, and South Sandwich Islands, plus the isolated oceanic islands of Bouvet and Peter I [11]. The much larger area of continental Antarctica comprises the geological regions of East and West Antarctica and their offshore islands, plus the eastern coastal regions of the Antarctic Peninsula. However, the latter was historically included under the “continental Antarctica” definition primarily due to the comparability of its climatic conditions, as virtually no biological survey and diversity data exist for the eastern Peninsula. Beyond the maritime and continental Antarctic regions, the sub-Antarctic region lies at mid-latitudes in the Southern Ocean and consists of a range of isolated islands generally in proximity to the Antarctic Polar Front [6, 12]. Beyond the “core” sub-Antarctic, further peri-Antarctic islands are recognized at lower latitudes, whose biodiversity overlaps with that of the formally defined sub-Antarctic Islands [12]. The maritime Antarctica is characterized by slightly higher summer temperatures and greater precipitation compared to continental Antarctica, while the sub-Antarctic islands are generally cool with only limited seasonal variation in environmental conditions and a considerable proportion of precipitation as rain [13, 14]. In the continental Antarctica, precipitation occurs almost entirely in the form of snow and is often extremely limited. In some parts of the continent where low atmospheric humidity is typical, much of this snow undergoes sublimation and is lost from terrestrial ecosystems before wetting of the underlying soil can occur. Common features of continental Antarctic soils are low moisture and nutrient concentrations, subzero temperatures for an extended period of each annual cycle, and frequent soil freeze–thaw cycles during the austral summer [10, 15]. Antarctic soils are also characterized by different formation histories and environmental factors (e.g., humidity, temperature, UV radiation, salinity, pH and carbon, and nutrient availability) [4, 8, 10, 16–19].
These diverse climate characteristics and soil properties influence macro- and micro-biological diversity patterns [14, 20, 21]. The harsh environmental conditions mean that the continent hosts only two native species of vascular plants, present exclusively on the Antarctic Peninsula and maritime Antarctic archipelagoes, where there is a much higher diversity and wider distribution of bryophytes and lichens compared to vascular plants [6, 22–24]. Marine vertebrate breeding colonies, and haul-out and molting areas, are present around the continent, with the vast majority in close proximity to the coast, where soil nutrients are locally enriched in marine-derived nutrients introduced by animal activity [25–27]. Invertebrate groups, such as springtails, mites, tardigrades, rotifers and nematodes, are often common but with varying patterns of species distributions across the continent [21, 28–32]. Some groups that are otherwise widely regarded to be cosmopolitan, such as nematodes, appear to be completely absent in certain regions even though other micro-invertebrates are present [33, 34], and many show high degrees of species-level endemism at various spatial scales [21, 32, 35–37]. Compared to plants and animals, microorganisms (e.g., bacteria, archaea, fungi) are numerically and phylogenetically dominant across the Antarctic continent [8, 38–41].
The unique biodiversity hosted by this largely pristine continent is currently threatened by a number of factors [42], including climate change where new climatic conditions could destabilize biotic equilibria [43], the introduction of new non-native species [44, 45], and direct physical human impacts [46–48]. The unique and largely pristine nature of terrestrial Antarctica (south of 60°) has been subject to Antarctic Treaty governance since 1961 and is currently protected under the Protocol on Environmental Protection to the Antarctic Treaty, whose requirements have led to several international research initiatives focusing on the current and future protection and conservation of the region [49–51]. Drawing on this initiative, the cataloged distribution patterns of micro- and macro-invertebrates, plants, algae, and some microorganisms have been used to define a series of Antarctic Conservation Biogeographic Regions (ACBRs) [52, 53]. The current definition of 16 ACBRs was based on the distribution of 1823 taxa derived from 38,854 biological records and expert-defined bioregions. However, it was also recognized that there was uneven distribution of data across both taxa and regionally within Antarctica. The available data represented vascular and non-vascular plants (4 and 258 taxa, respectively), metazoa (153 taxa), multi-cellular algae (182 taxa), eukaryotic microalgae and protists (283 taxa), fungi (760 taxa), and bacteria (183 taxa). It is notable that only 10% of the available taxa and 3% of the records belonged to the bacterial domain, and only to the phyla Actinomycetota and Cyanobacteriota [52]. A good fit into the ACBR frame has been reported for diatoms in Antarctic lakes [54], but no previous studies have been reported that test the distribution of much broader taxonomic groups (i.e., total microbiomes) within the context of the ACRB framework. Further, to date, no studies analyzing Antarctic bacterial community patterns at a continental scale have been conducted using data generated by high-throughput sequencing technology, despite the general upsurge in the application of these modern molecular biological approaches.
Regional and local biogeographic surveys suggest that prokaryotic distribution patterns are complex, varying in relation to the studied area and scale, driven by both abiotic and biotic factors, and potentially impacted by different dispersal mechanisms [7, 14, 20, 39, 55–59]. High soil microbial community spatial heterogeneity, arising from variability in edaphic factors, has been observed in some Antarctic areas such as the continental Antarctic Ross Sea region [39, 55, 60, 61] and maritime Antarctic Signy Island [62]. Some prokaryotic taxa are potentially endemic to the Antarctic continent or specific Antarctic areas [43, 63–66], while others show cosmopolitan distributions, possibly indicative of different past and ongoing dispersal strategies [20, 67]. Despite the existence of multiple prokaryote phylogenetic datasets from many Antarctic ice-free areas, very few of these data have yet contributed to the development of the ACBR classifications.
In this study, we set out to conduct the first continental-scale biogeographic survey of soil bacterial communities across Antarctica. We used 16S rRNA gene amplicon datasets to investigate bacterial phylogenetic patterns at a continental scale (i.e., distance-decay analysis) and assess major environmental drivers likely to contribute to these patterns (e.g., temperature, precipitation). Our aim was to assess whether any bacterial distribution patterns identified were consistent with and/or could provide a valuable addition to the current ACBR classification system. Furthermore, we compared how bacterial communities from mainland and island samples differed and investigated how these communities were shaped by bioclimatic variables such as air temperature and precipitation.
Materials and methods
Dataset creation
Our dataset comprised 1164 samples from 17 16S rRNA gene sequencing datasets (Table S1) derived from shallow (0–10 cm depth) soils. Soil storage conditions and DNA extraction methods are reported in Table S1. These 17 datasets were all derived from the 16S rRNA gene but spanned five distinct 16S rRNA regions, viz., V1–V3, V3–V4, V4, V4–V5, and V8–V9. The primer pairs used for amplification were 27F–519R and pA–BKL1 for V1–V3, 341F–805R and 341F–806R for V3–V4, 515F–806R for V4, 515F–926R for V4–V5, and 926F–1392wR for V8–V9 (Table S1). All datasets were collated from online repositories and collaborators except for dataset 10, which was obtained by resequencing samples collected from the Prince Charles Mountains and coastal areas in Eastern Antarctica ACBR [68–70]. 16S rDNA amplicon libraries were prepared using the KAPA HiFi PCR kit (Roche) and sequenced using Illumina MiSeq technology (paired-end, 300 cycles) by Omega Bioservices (Norcross, USA). Data availability for all datasets is reported in Table S1.
Bioclimatic variables and metadata
Bioclimatic variables (1981–2010) were extracted from the CHELSA database v 2.1 [71] using the R package terra v 1.6–47 [72] in the R environment v 4.1.3 [73]. The extracted bioclimatic variables were BIO1 (mean annual air temperature, °C), BIO2 (mean diurnal air temperature range, °C), BIO4 (temperature seasonality, °C/100), BIO5 (mean daily maximum air temperature of the warmest month, °C), BIO10 (mean daily mean air temperatures of the warmest quarter, °C), BIO12 (annual precipitation, kg m−2), BIO14 (precipitation in the driest month, kg m−2), BIO15 (precipitation seasonality, %), BIO17 (mean monthly precipitation in the driest quarter, kg m−2), BIO18 (mean monthly precipitation in the warmest quarter, kg m−2), and SWE (snow water equivalent, kg m−2) (Table S2). Elevation values were extracted from the REMA digital elevation model (100 m DEMs) [74] in QGIS Desktop 3.28.2 [75]. Distance from coast and ocean for each sample point (the latter relevant in the presence of floating ice shelves) was obtained using Bedmap2 raster files in QGIS (Table S2). Elevation and distance from coast/ocean data were used only for analyses focused on mainland samples. All maps reported in this work were created using QGIS Desktop 3.28.2 in Quantarctica [76].
Sample classification into ACRBs
Classically, terrestrial Antarctica is considered to include three broad biogeographic regions: the sub-, maritime, and continental Antarctic [9, 11]. Chown and Convey (2007) redefined the boundary between the latter two regions by their definition of the “Gressitt Line” as an important biogeographic boundary at the base of the Antarctic Peninsula [77]. More recently, the regions have been further divided into 16 distinct “Antarctic Conservation Biogeographic Regions” (ACBRs) [52, 53], a classification that applies specifically to the area of Antarctic Treaty governance south of the 60° latitude parallel. The samples in the 17 datasets represented here were obtained from 10 of the 16 currently recognized ACBRs: 1, 3, 4, 6–10, 12, and 16, as well as several of the sub- and peri-Antarctic islands (Fig. 1; Table S2) [58, 61, 78–85]. Our dataset includes 846 samples from the Antarctic mainland, 129 samples from islands and associated archipelagos of the Antarctic mainland, and 13 samples from the sub- and peri-Antarctic islands. Excluding samples from Bouvetøya, Peter I Øya, and Scott Island (accounting for 11 samples), all samples from the Antarctic mainland and its associated islands and archipelagos are included in the ACBR classification. The 118 samples obtained from islands and archipelagos associated with mainland Antarctica and included in the ACBR classification (ACBRs 1, 3, 4, 6, 7, 9, 12, and 16) are shown in Figure S1 and represent: James Ross Island (ACBR 1); South Shetland Islands (e.g., Livingston Island), Palmer Archipelago (e.g., Anvers Island), Adelaide Island and islands in its proximity, and Alectoria Island (ACBR 3); Alexander Island (ACBR 4); an un-named island in the Jelbart ice shelf (ACBR 6); Herring Island (Windmill Islands) and Hop Island (ACBR 7); Ross Island (ACBR 9); Siple, Lauff and Maher Islands (ACBR 12); and Samson Island (ACBR 16). The sub- and peri-Antarctic islands sampled included Marion, Possession, Kerguelen, Bartolomé, and South Georgia; sub- and peri-Antarctic islands are not included in the ACBR classification (Figure S2). Samples from these islands were considered together with those from Bouvetøya (formally included in the maritime Antarctic), Peter I Øya, and Scott Island (islands in the area of Treaty governance but not included in the ACBR classification) in the analyses described below and are referred to below as “ACBR unclassified islands” (AUI) for brevity. The AUI group does not aim to group islands on a bioregional basis; instead, it simply groups islands that did not fall into any ACBR to facilitate further analyses.
Data analyses
All the 16S rRNA gene datasets except datasets 6 and 7 comprised raw forward and reverse reads. Data for datasets 6 and 7 (i.e., Victoria Land, Antarctic Peninsula and sub- and peri Antarctic island samples) were retrieved as pre-merged forward and reverse reads. For all other datasets, adapters were trimmed using Trimmomatic v 0.39 [86]. Each dataset was then separately analyzed in the R environment v 4.1.3 [73]. Sequences were processed with the same pipeline using dada2 v 1.22 [87]. Parameters “trimRight”, “trimLeft”, and “maxEE” from the function filterAndTrim() were set accordingly for the read length and error profile specific to each library (Table S3). Taxonomy was assigned using the SILVA database v 138.1 [88]. Blanks were present in datasets 1, 8, 10, and 16 and were removed using decontam v 1.14.0 [89]. All datasets were combined using the R package phyloseq v 1.38 [90]. Only sequences assigned to Bacteria, excluding mitochondrial and chloroplast DNA, were retained. Sequences assigned to the domain Archaea were excluded because previous tests demonstrated that the primer sets used in this study differentially targeted archaeal organisms [91]. Only samples with a sequence count of > 5000 were retained [92]. Due to the high disparity in sample read depth (n = 5247–988,658 reads) (Table S4), the dataset was normalized using the R package SRS v 0.2.3 [93] using the sample with the lowest amplicon counts (n = 5247) as the reference. Two samples in which all reads were assigned to unknown taxa were removed from the dataset after exploring their taxonomy as 100% of the reads were assigned to unknown taxa in those samples. Therefore, of the initial 1164 samples, 988 were used in further analyses. All of the following analyses were performed at the genus level because this composite dataset, comprising of several amplicon datasets spanning different 16S rRNA regions, did not allow accurate taxonomic analysis at the amplicon sequence variant (ASV) level [91]. Alpha diversity indices were generated using vegan v 2.6–4 [94] to calculate richness and Shannon indices on the genus-level taxonomic dataset. To test whether diversity indices differed across the defined regions, analysis of variance (ANOVA) was performed using the function aov followed, when significant, by Tukey’s honest significant difference (HSD) statistical tests to obtain pairwise comparisons. A conservative significance level of p < 0.01 was considered significant. ANOVA was only performed on bioclimatic variables from ACBRs 3, 6–10, and 16, and the ACBR unclassified islands (AUI) which were represented by at least 20 samples.
Permutational multivariate ANOVA (PERMANOVA) was performed using adonis2 (vegan), again using data only from ACBRs 3, 6–10, and 16, and the AUI which were represented by at least 20 samples. Pairwise comparison statistics were obtained using pairwiseAdonis v 0.4 [95], and p values were adjusted using the false discovery rate method (FDR) [96]. Both PERMANOVA and pairwise comparisons were calculated using 1000 permutations and calculated on Bray–Curtis dissimilarity matrices obtained from taxonomic datasets at the genus level, excluding reads that could not be classified at this level.
Bioclimatic variables were first standardized using the function decostand (vegan) and then checked for collinearity with vif.cca, and only variables with VIF < 20 were retained (maximum VIF retained = 12.33). The function ordiR2step was run to perform stepwise model building for distance-based redundancy analysis (dbRDA). The significance of the tested variables was obtained using anova.cca. Variation partitioning was performed with varpart on the same variables as selected from dbRDA. When variation partitioning was applied at the single ACBR level, only bioclimatic variables highlighted by dbRDA analysis performed on the entire dataset (BIO2, BIO4, BIO10, BIO15, and BIO18) were used. Geographical coordinates were transformed calculating principal coordinates of neighbor matrices using the function pcnm.
Principal Coordinate Analysis (PCoA) was performed using the pcoa function from the R library ape v 5.6–2 [97]. The function envfit (vegan) was then used to calculate ACBR and bioclimatic variable multiple regressions with the PCoA ordination axes. Only bioclimatic regions identified as significant by the function anova.cca were used in the envfit analysis.
Correlations between the genus-level taxonomic dataset and geographical distance (distance-decay) and bioclimatic dataset were assessed by calculating distance matrices using the vegan function vegdist for the community and bioclimatic datasets (Bray–Curtis and Euclidean distances, respectively) and distm for the geographical coordinates using the R library geosphere v 1.5–18 [98]. Mantel tests were then calculated using Spearman’s correlation and 1000 permutations. Dendrograms were created by calculating distance matrices as previously described and then by running the functions hclust and as.dendogram in the R package dendextend v 1.16.0 [99]. Dendrograms were combined with the function tanglegram.
Detailed taxonomic analyses were performed only on taxonomically consistent datasets derived from the amplification of the V3–V4 and V4 regions of the 16S rRNA gene (503 samples) [91]. This dataset subset represented 7 out of the 10 analyzed ACBRs (plus AUI) and contained samples from the Antarctic Peninsula, the Transantarctic Mountains, and the Victoria Land. No samples from Eastern Antarctica or Dronning Maud Land were included. The dominant community was defined as including all genera with a relative abundance of > 1% in at least one sample that was present in at least 10% of samples. The 10% threshold was chosen to include genera present exclusively on the Antarctic Peninsula. Random forest analysis was performed using the R package randomForest v 4.7 [100] on the genus-level dominant community dataset, which was transformed to relative abundance. Genera with “explained variance” higher than 30% using the randomForest algorithm were then used for Spearman’s semi-partial correlation with bioclimatic variables using the R packages ppcor v 1.1 [101] and rfPermute v 2.5.1 [102]. Correlations with p < 0.01 were considered significant. Only bioclimatic variables highlighted in dbRDA were used in these analyses to exclude collinear variables and therefore avoid redundancy (SWE, BIO2, BIO4, BIO10, BIO5, and BIO18). Genus relative abundances in each ACBR and the AUI were obtained by summing the reads of samples from the same ACBRs and then calculating relative abundances for each of them. Linear discriminant analysis effect size (LEfSe) analysis based on Kruskal–Wallis tests (p < 0.01) was performed on this data subset using the R package microeco v 1.1.0 [103]. Holm correction was used to adjust p values [104].
Figures were plotted using the R packages ggplot2 v 3.3.5 [105], gplots v 3.1.3 [106], gridExtra v 2.3 [107], and Cairo v 1.5.12.2 [108]. Data manipulation was carried out using default R packages and usedist v 0.4.0.9000 [109]. The R scripts used for the analysis of the sequencing data can be found on the GitHub page https://github.com/gvMicroarctic/AntarcticBiogeographyPaper.
Results
Alpha diversity and unclassified reads across ACBRs
A total of 52 bacterial phyla were identified from the Antarctic soils (Table S5). The most abundant phylum was Actinomycetota, accounting for 30.6% of reads, followed by Bacteroidota (13.9%), Pseudomonadota (13.5%), Chloroflexota (9.9%), Acidobacteriota (8.5%), Cyanobacteriota (5.1%), Verrucomicrobiota (3.4%), Gemmatimonadota (3.0%), Bacillota (2.7%), and Deinococcota (1.3%). One percent of reads were unclassified at the phylum level.
The total number of genera included in the dataset was 1445, ranging from 3 to 278 across individual samples (Table S6). The highest numbers of genera were recorded from the AUI and in ACBRs 1, 3, 12, and 16, while ACBRs 4 and 6–10 had the lowest numbers of genera (Fig. 2A). The numbers of genera differed significantly between ACBRs (ANOVA F = 56.84, df = 10, p < 2e − 16). High numbers of Tukey’s pairwise comparisons (from 7 to 9) were significant (p < 0.01) for ACBRs 3, 12, and 16, while ACBRs 1, 4, and 8 showed the lowest numbers of significant pairwise differences (from 1 to 4) (Fig. 2B). Similar trends were observed for Shannon diversity (ANOVA F = 66.71, df = 10, p < 2e − 16), although fewer significant pairwise correlations were obtained, suggesting less divergent Shannon diversity across ACBRs (Figure S3). Because alpha diversity indices were calculated at the genus level, low richness and Shannon diversity values for some ACBRs could result from samples with high “unknown” counts (Table S6). The percentage of reads assigned to unknown genera varied across samples, ranging from 0.0 to 84.3% (Fig. 2C). This potential bias was confirmed by a significant Pearson’s correlation between the total number of genera and the percentage of unknown genera (r = − 0.1624, p = 2.858e − 07).
Alpha diversity showed significant correlations with bioclimatic variables, with significant positive correlations for BIO1, BIO5, BIO10, BIO12, BIO14, BIO17, BIO18, and SWE, and negative correlations for BIO2, BIO4, BIO15, and elevation, for both Shannon diversity and richness (Figures S4–S5). Distance to the ocean was significantly correlated only with Shannon diversity (Figures S4–S5).
ACBR clustering
Soil bacterial communities from AUI and ACBRs 3 and 12 clustered together in the PCoA plot (Fig. 3A). Samples from ACBR 8 showed a distinct clustering, suggesting consistent bacterial community structures within that ACBR (Fig. 3A). Samples from all other ACBRs did not show clear clustering according to region. ACBRs 1, 3, and 4 differed geographically from other mainland ACBRs, as their samples were mainly represented by soils collected from islands close to the Antarctic Peninsula. In terms of soil bacterial community structure, ACBR 3 samples were more closely related to those from sub- and peri-Antarctic islands (i.e., part of AUI; Fig. 3B).
Despite the high level of overlap between soil bacterial communities, different ACBRs could be significantly distinguished using a Bray–Curtis dissimilarity matrix (PERMANOVA R2 = 0.19, p < 0.01). Pairwise comparisons showed that soil bacterial communities from ACBRs 3 and 8 were the most distinct (Fig. 3C). AUI showed the lowest degree of dissimilarity to ACBRs 3, 7, and 9, all of which themselves included soil samples collected from islands.
dbRDA only explained 12.0% (adjusted R2) of the observed variance in community structure across the dataset (Fig. 4). Bioclimatic variables related to temperature (BIO10, mean daily mean air temperatures of the warmest quarter) and precipitation (BIO18, mean monthly precipitation amount of the warmest quarter) were drivers for the bacterial community composition in ACBRs 1, 3, 12, and AUI; most of these samples were obtained from Antarctic, sub-Antarctic, and peri-Antarctic islands. Bioclimatic variables related to precipitation and temperature seasonality and daily ranges (BIO2, BIO4, and BIO5) were drivers for the bacterial communities in ACBRs 9 and 10; most samples from these ACBRs were sampled from mainland Antarctica. Sample distributions partially followed bioclimatic conditions in the different ACBRs. ACBRs 1, 3, 4, 7, and 12 have higher mean daily air temperatures in the warmest quarter (BIO10) and mean monthly precipitation amounts in the warmest quarter (BIO18) compared to ACBRs 6, 8–10, and 16 (Figure S6; Table S2). Mean diurnal air temperature range, temperature, and precipitation seasonality (BIO2, BIO4, and BIO15, respectively) were lowest in ACBRs 1, 3, and 12 compared to the other ACBRs (Figure S6). All bioclimatic variables showed statistically significant differences (p < 0.01) between ACBRs; this was also the case for elevation, “distance from the ocean” and “distance from the coast” (Table S7). ACBR 4 showed mixed characteristics with high temperatures but also high ranges and seasonality values (Figure S6); this was reflected in the dbRDA, in which ACBR 4 samples showed a wide clustering in the plot (Fig. 4).
Distance-decay analyses showed that geographic distance between samples exhibited a low, but significant, correlation (r = 0.1499, p = 0.0009) with bacterial composition dissimilarity scores between samples (Figure S7A). Variation partitioning also showed that 13.2% of bacterial community variation was explained by geographical distance between samples alone, while only 2.7% of the variation was explained by the bioclimatic data, with 6.6% of variance being explained by their interaction (Figure S8A) at a significance threshold of p < 0.01 (Table S8).
Bacterial community structure explained by ACBRs
The most consistent clustering of samples was detected for ACBR 3 (Fig. 5A and S9), where samples largely clustered together for both abiotic variables and soil bacterial community structures (Fig. 5A). Whereas samples collected from islands showed similar bacterial communities for ACBRs 3, 12, and AUI, other island samples clustered more closely to soils taken from the same ACBR compared to samples collected from other islands, as in the cases of ACBR 7 and 16 (Fig. 5A). Samples from other ACBRs followed different trends (Fig. 5B–G). For example, we observed a consistent clustering of samples from ACBR 6 according to bacterial composition and geographical trends, whereas the bioclimatic data did not show a detectable clustering (Fig. 5B). By comparison, relatively consistent geography was shown for samples from ACBRs 8–10 and 16, but samples were characterized by variable bioclimatic data, which was reflected by a wider bacterial community distribution (Fig. 5D–G). Samples from ACBR 7 were consistent both in geography and bioclimatic data but the bacterial community formed separate clusters (Fig. 5C). These clusters partially corresponded to samples from the Windmill Islands and Vestfold Hills regions (Figure S10) and PERMANOVA performed using this grouping generated a significant outcome (p < 0.01) with R2 = 0.14. Samples from the Vestfold Hills clustered more closely to those collected from ACBRs 9 and 10, whereas samples from the Windmill Islands clustered more closely to those from ACBR 3 and AUI.
AUI and ACBRs 8 and 10 showed higher variance explained by bioclimatic data, while ACBRs 3, 6, 7, 9 and 11 showed higher variance explained by geography (Figure S8B–I). Variation partitioning performed on AUI and ACBR 8 showed a lower residual variance not explained by bioclimatic variables and geography compared to the other ACBRs (0.42 and 0.362, respectively). The ACBRs with the highest residual component of variance were ACBRs 9 and 16 (0.816 and 0.879, respectively). The other ACBRs showed residual variance between 0.662 and 0.764.
Islands vs mainland
PERMANOVA performed on the dissimilarity matrices of soil bacterial community structures of island samples vs mainland samples was significant, although significance scores were lower than for ACBRs (p = 0.0009, R2 = 0.0361). This indicated that only a low percentage of observed variance was explained by whether a sample was collected from the Antarctic mainland or associated islands and is consistent with our previous observations that island soil microbiomes were more similar to geographically less distant soils than to soils collected from other islands (Fig. 3B and 5A).
We also identified a division between islands from ACBRs 1, 3, and 4 (islands from the Antarctic Peninsula) and all the other islands (Fig. 6A). Islands that were not grouped into the ACBR classification (i.e., the AUI) also showed distinct clustering: soil bacterial communities from the islands of South Georgia, Bouvet, and Marion islands all clustered with those from Antarctic Peninsula islands, whereas Peter Øya, Scott, and Bartolomé islands grouped closer to islands from ACBRs 7, 9, 12, and 16 (except for two samples collected from Possession and Kerguelen islands, which clustered close to Antarctic Peninsula samples) (Fig. 6A). Samples from the Antarctic Peninsula islands (ACBRs 1, 3, and 4) correlated significantly (p < 0.01) with all temperature- and precipitation-related bioclimatic variables (BIO10, BIO18, and SWE), while the other islands correlated with seasonal or diurnal differences in precipitation or temperature (BIO2, BIO4, and BIO15) (Fig. 6B and S11A). It is appropriate to note that ACBR 3 contained the highest number of island samples in our dataset, and these showed a strong clustering of bacterial composition according to the island from which the samples were collected (Fig. 6C). This consistent clustering by island was confirmed by PERMANOVA with just the island dataset (p = 0.0009, R2 = 0.53) when using the island as the explanatory factor for differences in bacterial composition between samples. By comparison, the R2 value was 0.04 when ACBR was used as an explanatory factor for the island dataset.
Grouping mainland samples by factor “ACBR” also resulted in a weak (R2 = 0.025), albeit statistically significant correlation (p < 0.01). Stronger correlations were identified when Mantel tests were used to compare bacterial community dissimilarities and geography (distance-decay, with r = 0.1611, p = 0.0009), and bacterial community dissimilarities and environmental variables (r = 0.1102, p = 0.0009) (Figure S7E–F). By comparison, Mantel tests for differences between bacterial community dissimilarities and geography for the island dataset yielded r = 0.37776 (p = 0.0009), and r = 0.3001 (p = 0.0009) for bacterial community dissimilarities and environmental variables (Figure S7C–D). When Mantel tests were used to compare mainland bacterial community and elevation, distance from the coast, or distance from the ocean, only elevation correlated significantly (r = 0.0780, p = 0.0009) (Figure S7G–I). The separate PCoA clustering observed for ACBR 8 might be due to negative correlations with elevation and distances from the coast/ocean of ACBR 8 samples (Fig. 6D–E and S8B).
When only the island dataset was analyzed, 19.1% of the variance was explained by geography, 9.2% by bioclimatic data, 4.6% by their interaction, and 67.1% was residual (Figure S8J). When only mainland samples were analyzed, variation partitioning analyses showed 78.9% residual variance, with geographic distances explaining the most variance in bacterial community structure between samples (geography = 9.8%, bioclimatic data = 4.0%, elevation/distance from coast/ocean = 1.3%) (Figure S8K).
Climatic drivers of the dominant soil bacteria and indicator taxa across Antarctica
In order to understand how climatic variables impacted the more abundant bacterial taxa in Antarctic soil communities, we performed a correlation analysis between the bioclimatic variables and the relative abundance of the dominant genera across the sample sets. A total of 149 genera were identified as dominant (i.e., present in more than 10% of samples and with a relative abundance higher than 1% in more than one sample). Of these, 51 genera showed habitat preferences linked to the tested bioclimatic variables based on random forest predictions (Figure S12). Semi-partial correlations performed on the 51 genera and the six bioclimatic variables showed that most of the significant correlations were linked to mean daily mean air temperatures of the warmest quarter (BIO10, 35 correlations), followed by precipitation seasonality (BIO15, 20 correlations), temperature seasonality (BIO4, eight correlations) and mean diurnal air temperature range (BIO2, three correlations). No significant correlations (p ≥ 0.01) were found for snow water equivalent (SWE) and mean monthly precipitation amount of the warmest quarter (BIO18) (Fig. 7A). All of the dominant genera presented in Fig. 7 showed habitat preferences correlated with BIO10, except for Crossiella, Gaiella, Thermobacum, Chthoniobacter, Bryobacter, Iamia, and Candidatus Udaeobacter, which showed negative correlations with BIO15. All correlations between genera and BIO10 were positive, except for Conexibacter which showed a negative correlation with BIO10. Thirteen of the genera that significantly correlated with BIO10 also correlated with BIO15. Of the eight genera correlating with BIO4, seven showed a negative correlation (Persicitalea, Algoriphagus, Simplicispira, Rhodoferax, Polaromonas, Dokdonella, and Thermomonas) and one showed a positive correlation (Crossiella). Three genera showed positive correlations with BIO2 (Persicitalea, Qipengyuania, and Gaiella) (Fig. 7A). All of the genera identified in the random forest analysis with at least one positive or negative correlation to the tested bioclimatic variables were also identified as indicator taxa for the different ACBRs using LEfSe analysis. The highest numbers of indicator taxa which also correlated to bioclimatic variables were in ACBR 4 (12 indicators), ACBR 12 (10), ACBR 3 (9), AUI (4), and then ACBRs 1, 8, 9, and 10 reporting only between 1 and 3 indicator taxa (Fig. 7B). The highest number of bacterial indicators was therefore ascribed to maritime Antarctica, corresponding to the areas where the highest diversity of genera was observed (Fig. 2). The most abundant genera that showed correlations to climatic parameters and were also identified as indicator taxa were Conexibacter (0.1–8.7%), Gaiella (0.0–4.2%), Nocardioides (0.5–3.8%), Candidatus Udaeobacter (0.0–3.2%), and Dokdonella (0.0–3.2%) (Fig. 7C; Table S9). The most abundant genera that were not selected by random forest modeling (variance explained < 30%) were Nostoc (0.0–7.0% in the different ACBRs), Tychonema (0.0–6.3%), Blastocatella (0.8–5.6%), Pedobacter (0.6–5.1%), and Sphingomonas (0.8–3.4%) (Figure S13).
Discussion
Our data reveal that bacterial communities in Antarctic soils do not align closely with the ACBR characterization proposed by Terauds et al. and Terauds and Lee [52, 53]. Only 19% of the variability was explained by ACBR as a discriminating factor, with high unexplained residual variability. This percentage further decreased (to 2.5%) when Antarctic-associated island soil samples were removed from the dataset (although this also had the confounding effect of removing most samples obtained from maritime Antarctica), supporting the conclusion that Antarctic mainland soil microbial community structures poorly reflect the ACBR classification, which itself is largely based on diversity patterns of macroscopic organisms. The most significant clustering in our dataset was between samples collected from either the continental Antarctica or the maritime Antarctica (the Antarctic Peninsula and the large off-shore archipelagoes of the South Shetland Islands and South Orkney Islands). Within these two areas, microbial communities showed high structural homogeneity, therefore not closely reflecting the ACBR classification [52, 53]. Bacterial communities from North Victoria Land (ACBR8) represented an exception, as they showed the highest microbial compositional differences compared to all the other ACBRs in continental Antarctica, possibly due to the fact that ACBR 8 experiences higher temperatures and precipitation rates compared to the remainder of the Victoria Land region (Figure S6). The observed clustering was principally explained by bioclimatic conditions, where samples from AUI and ACBRs 1, 3, 4, and 12 showed higher precipitation and temperature values (BIO10 and BIO18), and lower daily and seasonal precipitation and temperature ranges (BIO2, BIO4 and BIO15). It is probable that soil bacterial communities in these ACBRs are subject to more favorable environmental conditions than those in ACBRs 6–10 and 16 [110]. More challenging environmental conditions impose increased selection for resistant and/or resilient microbial communities [111]. These observations are consistent with the observed reductions in Antarctic soil bacterial diversity at higher latitudes [112], which are largely explained by reductions in air temperature and water availability [57, 113]. This was also supported by the observed correlations between air temperature, and other bioclimatic variables, with bacterial diversity: soils subjected to higher air temperatures and precipitation showed higher bacterial diversity, whereas those sampled from environments with wider seasonal and daily changes in temperature and precipitation showed lower diversity (Figure S4–S5). This suggests that bacterial diversity is higher under more favorable environmental conditions (higher water availability, higher temperatures, and more stable environmental conditions) and lower in more life-challenging conditions [57]. As temperature and precipitation regimes influence water and nutrient bioavailability [114], microbiome functionality [115, 116], and diversity [57] in soil, they are logical explanatory factors (SWE, BIO2, BIO4, BIO10, BIO15, and BIO18) of observed Antarctic soil bacterial community patterns (Figs. 3 and 4 and Figure S11). Nevertheless, only a low percentage of variability overall was explained by bioclimatic variables (Figs. 3 and 4, Figures S8 and S11).
A high percentage of unexplained variance is observed both when ACBR classification and bioclimatic variables are taken into consideration as explanatory factors. This is not surprising as microbial communities on the Antarctic continent are distributed and structured by a multiplicity of environmental factors and dynamics. Distance-decay relationships between geographical distances and microbial diversity vary in relation to environmental connectivity [17], where the Antarctic continent includes both connected and fragmented habitats [17, 81], and therefore presents a diversity of factors that shape microbial distributions in different Antarctic areas. Notably, it is currently thought that eolian microbial dispersal in continental Antarctica is limited [56, 117] and that microbial community distribution patterns in Antarctica are more influenced by the existence of suitable glacial refugia (habitable areas that persisted during glaciation cycles) and therefore by soil histories and climate legacies [37, 118]. A regional study conducted in the McMurdo Dry Valleys showed that soil microbial composition was impacted by geographical distance, in part due to variations of the geochemical variables across the studied region [39]. In the Transantarctic Mountains, microbial diversity in soil ecosystems significantly varies with terrain age, illustrating that biotic communities may vary with both abiotic spatial heterogeneity and geological history [119]. At continental scales, geographical distances can shape microbial distributions due to dispersal patterns, climatic characteristics, and continental formation history [7, 14]. The lack of available consistent geochemical data for our datasets probably also contributed to the observed high percentage of unexplained variance. It has frequently been observed that Antarctic soil microbial distribution varies in relation to edaphic characteristics such as pH, electrical conductivity, soil moisture, soil temperature, and nutrient content [20, 30, 57, 58, 120, 121]. However, climate influences edaphic characteristics, therefore indirectly influencing soil microbial communities [122].
Our results suggest that the geographically large ACBRs may be too broad to capture microbial biodiversity patterns as they encompass regions that have very different environmental conditions and, thus, soil bacterial communities. A pertinent example in the current study is that of ACBR 7, in which distinct clustering separating the Windmill Islands and the Vestfold Hills was observed. These regions represent very different environments [7], with the Vestfold Hills being more extreme and dominated by Actinobacteriota, and the near-coast Windmill Islands having unique microbial communities with some sites dominated by Candidatus Dormibacteraeota and Eremiobacteriota [7]. Notably, the bacterial communities of the Vestfold Hills clustered more closely with samples collected from ACBRs 9 and 10, also characterized by extreme climatic conditions, compared to ACBR 3 and the sub- and peri-Antarctic islands which clustered with samples collected from the Windmill Islands region (Figures S6 and S10).
We also identified a strong divergence in the drivers of soil bacterial community composition when considering specifically the Antarctic/sub-Antarctic islands and the continental mainland. For instance, bacterial communities clustered consistently within each island/island group examined, but did not show any clear geographical differentiation on the Antarctic mainland. This might be because the island and mainland soils have different formational histories [5]. Island bacterial communities were generally distinct from each other, highlighting the strong effect of island isolation on bacterial community development [123]. A previous study reported changes between inland and coastal soils in terms of fungal diversity due to differences in soil geochemistry and environmental conditions [124]. Because microbial community distributional patterns are partially shaped by bioclimatic conditions, and because observations and model predictions highlight that maritime Antarctica is most strongly affected by global warming [125–127], microbial community distribution and diversity in this region may be highly impacted in the near future [128].
Some of the sampled areas in our dataset are not included in the ACBR classification. These included remote oceanic islands included within the maritime Antarctic (Bouvetøya, Peter I Øya) and the continental Antarctic near-coast (Scott Island), and the sub- and peri-Antarctic islands (South Georgia and Marion, Possession, Kerguelen and Bartolomé islands). Soil bacterial communities from these islands clustered more closely with geographically associated islands/groups within the ACBR system, and soils from South Georgia Island, Marion Island, and Bouvetøya clustered closely with those from the maritime Antarctic ACBRs 1, 3, and 4 (Group 1), whereas soils from Scott Island, Peter I Øya, and Bartolomé Island clustered closer to the continental Antarctic islands (from ACBRs 7, 9, and 12) (Group 2). Group 2 might indicate the influence of the Pacific Ocean and currents around the entire continental Antarctic coastline. Furthermore, the Antarctic Coastal current flows south along the western Antarctic Peninsula (Group 1), potentially influencing soil microbiomes on the South Shetlands and maritime Antarctic coastline (also Group 1). A similar argument was previously advanced by Pugh and Convey (2008) [28], but more studies are needed to test this hypothesis. Lebre et al. (2023) have proposed a differentiation of the sub- and peri-Antarctic islands presented in this study into the “classical” maritime, continental, and sub-Antarctic regions, based on soil microbial community compositions [59]. However, the addition of maritime Antarctic Islands from the Antarctic Peninsula region in the current study is not consistent with this proposed island clustering (c.f., [59]), further highlighting the importance of spatial scales when studying patterns of soil microbial ecology [58].
Of the dominant genera, 28% showed habitat preferences connected to at least one of the bioclimatic variables, particularly for habitats with higher temperatures (BIO10) and precipitation seasonality (BIO15) (Fig. 7A). Some of the genera showing habitat preferences, such as Nitrospira and Thiobacillus, have important ecosystem functions. Members of Nitrospira and Thiobacillus are chemolithotrophic nitrite- and sulphur-oxidizers and probably play a key role in enriching these soils with bioavailable nitrate and sulfate [129–131]. Other organisms potentially contributing to inputs of bioavailable elements (e.g., organic carbon) to Antarctic soils are the photoautotrophic genus Rhodoferax [132]. All of these genera showed preferences for warmer habitats and probably have higher metabolic efficiencies at higher temperatures [133, 134]. Only Conexibacter showed a preference for lower temperature habitats. This genus has, in fact, been reported as widely present and dominant in Antarctic soils [135–137]. On the contrary, known cold-active taxa such as Polaromonas and Aequorivita showed a preference for higher temperature habitats (Fig. 7) [138, 139]. Acidophilic and acidotolerant genera (Acidibacter and Bryobacter) also showed preferences for habitats with warmer air temperatures: these genera were more abundant in vegetated sub-Antarctic island soils, which also typically exhibit lower pH values [140–142]. Taxa known to be extremely competitive in microbial communities, such as members of the genus Lysobacter, also showed higher temperature habitat preferences [143]. We suggest that taxa that exhibit habitat preferences have undergone some degree of habitat filtering [144] relating to the inherent climate conditions. It is therefore reasonable to hypothesize that these taxa are more likely to respond, either positively or negatively, to changes in climate than those taxa with more homogeneous distributions. Given that these taxa are dominant members of the community, it is likely that climate change-induced changes in their population numbers and/or function will impact the structure and function of the entire communities, and potentially also the soil geochemistry. Furthermore, all taxa that showed climatic preferences were also statistically identified as indicator genera of different ACBRs by LEfSe, showing that altered climatic conditions could also significantly affect bacterial communities, particularly the dominant taxa associated with different ACBRs.
Our study reports a comprehensive dataset from published and de novo Antarctic soil bacterial community datasets, where the combination of datasets from different sources has provided a viable means of circumventing the limitations imposed by the remoteness and sampling challenges of the Antarctic region. Despite the use of different 16S rRNA hyper-variable regions in generating the separate datasets used in this study, we argue that this is a valid approach, supported by the recently published study of Varliero et al., in which a subset of Antarctic soil samples was amplified with multiple 16S primer sets [91]. Analysis of the sequence data obtained indicated that the principal similarity/dissimilarity trends in bacterial community composition were effectively preserved, irrespective of the hyper-variable region amplified [91].
Conclusions
We conclude that Antarctic soil bacterial diversity patterns and community structure identified in this study do not conform closely to the current ACBR classification, which is based primarily on data representing eukaryotic organisms, often from limited taxonomic groups. This might be due to the fact that prokaryotic soil communities, even in a single sample, are hugely diverse, represent a wide range of physiologies and functions, and are likely to be influenced by different distributional and dispersal drivers compared to eukaryotes. Soil prokaryotes may also exhibit higher levels of resistance and resilience to environmental stressors than higher organisms, which dominate the ACBR categories [110, 114, 118]. Furthermore, bacterial distributions are also based on soil heterogeneity and the presence of favorable microenvironments [85, 110, 114, 118]. Our results further suggest that Antarctic bacterial communities, and particularly the identified indicator taxa, might be impacted by climatic and other environmental changes in the different ACBRs [145].
The combined dataset used in this study represents a comprehensive baseline upon which future studies of Antarctic microbial ecology can be developed, and the outcomes of this study can also be used to bolster biodiversity conservation efforts on the continent and its associated islands. However, considering how soil geochemistry can vary at the micro-scale [146, 147] and how these microbial microenvironments and refugia are important in shaping microbial communities [118], future increased coverage of soil sampling design across Antarctica would allow for the development of a more robust ACBR-style classification including information derived from prokaryotic communities and also extending to islands that lie beyond the region of Antarctic Treaty governance. Therefore, further studies are clearly required and we emphasize the need for more extensive campaigns to systematically sample and better characterize Antarctic soil microbial communities. In particular, more even and representative mapping of Antarctic microbial distributions is required with, at present, some areas being relatively well studied (e.g., the Antarctic Peninsula and parts of Victoria Land) and others being heavily underrepresented [7, 139, 148]. Similarly, extensive microbial diversity and community characterization should also be extended to other microbial habitats such as rocks, freshwater lakes, and ice sheet environments [15, 149–151].
Supplementary Information
Acknowledgements
The authors gratefully acknowledge contributions from Luis R. Pertierra, Noah Fierer, Maximiliano Ortiz, Fabiana Canini, Karin Staebe, Antonio Quesada, Pablo Almela, Steve K. Schmidt, Elizabeth M. H. Wellington, and Lars A. Meier. We thank Rebecca Hallas, Rachel Leihy, and Katie Moon who provided assistance in the field, and Paul Czechowski for performing the DNA extractions of dataset 10 samples. We particularly thank Fourie Joubert and Johann Swart for tirelessly maintaining the University of Pretoria servers.
Authors’ contributions
DC first conceived the study and procured the funding to undertake it. GV analyzed and interpreted the sequencing data, bacterial profiles, and biogeographical patterns. GV wrote the first draft of the manuscript. All authors read, edited and approved the final manuscript. Further, this study was possible because of sample/data sharing from multiple independent projects provided by the authors.
Funding
We acknowledge financial support from the South African NRF SANAP program (grant 129227). PC and KN are supported by NERC core funding to the British Antarctic Survey’s “Biodiversity, Evolution and Adaptation” Team. This work received support from École Polytechnique Fédérale de Lausanne, Swiss Polar Institute, and Ferring Pharmaceuticals through the Antarctic Circumnavigation Expedition. GV was partly supported by the Swiss National Science Foundation (SNSF) under the grant 310030_215119.
Availability of data and materials
The datasets generated and/or analyzed during the current study are available in the National Center for Biotechnology Information (NCBI) repository under the accession PRJNA699250, PRJNA504513, PRJEB55870, PRJNA630822, PRJEB29853, PRJNA868884, PRJNA781801, PRJNA765625, PRJEB63224, PRJEB55309, PRJNA678471, PRJEB11689, PRJNA684555, PRJNA721735, PRJNA359740, and SRP067111 and also at https://data.bioplatforms.com/organization/australian-microbiome. The R scripts used for the analysis of the sequencing data can be found on the GitHub page https://github.com/gvMicroarctic/AntarcticBiogeographyPaper.
Declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Pearce DA. Extremophiles in Antarctica: life at low temperatures. Stan-Lotter H, Fendrihan S, editors. Adapt Microb Life Environ Extrem Nov Res Results Appl. Vienna: Springer; 2012. p. 87-118.
- 2.Burton-Johnson A, Black M, Fretwell PT, Kaluza-Gilbert J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere. 2016;10:1665–1677. doi: 10.5194/tc-10-1665-2016. [DOI] [Google Scholar]
- 3.Bockheim JG, Hall KJ. Permafrost, active-layer dynamics and periglacial environments of continental Antarctica. South Afr J Sci. 2002;98:82–90.
- 4.Bockheim JG, Lupachev AV, Blume H-P, Bölter M, Simas FNB, McLeod M. Distribution of soil taxa in Antarctica: a preliminary analysis. Geoderma. 2015;245–246:104–111. doi: 10.1016/j.geoderma.2015.01.017. [DOI] [Google Scholar]
- 5.Bockheim JG. The soils of Antarctica. Switzerland: Springer International Publishing; 2015.
- 6.Convey P. Antarctic Ecosystems ☆. Ref Module Life Sci. Elsevier; 2017. p. B9780128096338021828. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128096338021828. Cited 30 Mar 2023.
- 7.Zhang E, Thibaut LM, Terauds A, Raven M, Tanaka MM, Van Dorst J, et al. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome. 2020;8:37. doi: 10.1186/s40168-020-00809-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Jiang X, Van Horn DJ, Okie JG, Buelow HN, Schwartz E, Colman DR, et al. Limits to the three domains of life: lessons from community assembly along an Antarctic salinity gradient. Extremophiles. 2022;26:15. doi: 10.1007/s00792-022-01262-3. [DOI] [PubMed] [Google Scholar]
- 9.Smith RIL. Terr Plant Biol Sub-Antarct Antarct. London, UK: Academic Press; 1984. pp. 61–162. [Google Scholar]
- 10.Beyer L, Bölter M, editors. Geoecology of Antarctic ice-free coastal landscapes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2002. Available from: 10.1007/978-3-642-56318-8. Cited 22 Feb 2022.
- 11.Holdgate MW. Terrestrial ecosystems in the Antarctic. Philos Trans R Soc Lond. 1977;279:5–25. [Google Scholar]
- 12.Selkirk P. The nature and importance of the sub-Antarctic. Pap Proc R Soc Tasman. 2007;141:1–6.
- 13.Convey P. Overwintering strategies of terrestrial invertebrates from Antarctica - the significance of flexibility in extremely seasonal environment. Eur J Entomol. 1996;93:489–505. [Google Scholar]
- 14.Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, et al. The spatial structure of Antarctic biodiversity. Ecol Monogr. 2014;84:203–244. doi: 10.1890/12-2216.1. [DOI] [Google Scholar]
- 15.Cary SC, McDonald IR, Barrett JE, Cowan DA. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol. 2010;8:129–138. doi: 10.1038/nrmicro2281. [DOI] [PubMed] [Google Scholar]
- 16.Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW. Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol. 2014;5. Available from: 10.3389/fmicb.2014.00154/abstract. Cited 17 Feb 2022. [DOI] [PMC free article] [PubMed]
- 17.Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, et al. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems: Microbial connectivity and landform structure. Environ Microbiol. 2016;18:1834–1849. doi: 10.1111/1462-2920.13034. [DOI] [PubMed] [Google Scholar]
- 18.Knox MA, Andriuzzi WS, Buelow HN, Takacs-Vesbach C, Adams BJ, Wall DH. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze–thaw cycles, in the Antarctic Dry Valleys. Fierer N, editor. Ecol Lett. 2017;20:1242–1249. doi: 10.1111/ele.12819. [DOI] [PubMed] [Google Scholar]
- 19.Wlostowski AN, Gooseff MN, Adams BJ. Soil moisture controls the thermal habitat of active layer soils in the McMurdo dry valleys. Antarctica J Geophys Res Biogeosciences. 2018;123:46–59. doi: 10.1002/2017JG004018. [DOI] [Google Scholar]
- 20.Chong C-W, Pearce DA, Convey P. Emerging spatial patterns in Antarctic prokaryotes. Front Microbiol. 2015;6. Available from: 10.3389/fmicb.2015.01058/abstract. Cited 17 Feb 2022. [DOI] [PMC free article] [PubMed]
- 21.Convey P, Peck LS. Antarctic environmental change and biological responses. Sci Adv. 2019;5:eaaz0888. doi: 10.1126/sciadv.aaz0888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Øvstedal DO, Smith RI. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press; 2001.
- 23.Peat HJ, Clarke A, Convey P. ORIGINAL ARTICLE: Diversity and biogeography of the Antarctic flora: diversity of the Antarctic flora. J Biogeogr. 2007;34:132–146. doi: 10.1111/j.1365-2699.2006.01565.x. [DOI] [Google Scholar]
- 24.Ochyra R, Lewis Smith RI, Bednarek-Ochyra H. The illustrated moss flora of Antarctica. Ochyra R, Lewis Smith RI, Bednarek-Ochyra H, editors. Cambridge, UK. Cambridge University Press. 2008.
- 25.Bokhorst S, Convey P, Aerts R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr Biol. 2019;29:1721–1727.e3. doi: 10.1016/j.cub.2019.04.038. [DOI] [PubMed] [Google Scholar]
- 26.Santora JA, LaRue MA, Ainley DG. Geographic structuring of Antarctic penguin populations. Fleishman E, editor. Glob Ecol Biogeogr. 2020;29:1716–28. doi: 10.1111/geb.13144. [DOI] [Google Scholar]
- 27.LaRue M, Salas L, Nur N, Ainley D, Stammerjohn S, Pennycook J, et al. Insights from the first global population estimate of Weddell seals in Antarctica. Sci Adv. 2021;7:eabh3674. doi: 10.1126/sciadv.abh3674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Pugh PJA, Convey P. Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeogr. 2008;35:2176–2186. doi: 10.1111/j.1365-2699.2008.01953.x. [DOI] [Google Scholar]
- 29.McGaughran A, Stevens MI, Hogg ID, Carapelli A. Extreme glacial legacies: a synthesis of the Antarctic Springtail phylogeographic record. Insects. 2011;2:62–82. doi: 10.3390/insects2020062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA. The changing form of Antarctic biodiversity. Nature. 2015;522:431–438. doi: 10.1038/nature14505. [DOI] [PubMed] [Google Scholar]
- 31.Czechowski P, de Lange M, Knapp M, Terauds A, Stevens MI. Antarctic biodiversity predictions through substrate qualities and environmental \textlessspan style=“font-variant:small-caps;”\textgreaterDNA\textless/span\textgreater. Front Ecol Environ. 2022;20:550–557. doi: 10.1002/fee.2560. [DOI] [Google Scholar]
- 32.Convey P, Biersma EM, Casanova-Katny A, Maturana CS. Refuges of Antarctic diversity. Past Antarct. Elsevier; 2020. p. 181–200. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128179253000100. Cited 30 Mar 2023.
- 33.Wall DH, Virginia RA. Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol. 1999;13:137–150. doi: 10.1016/S0929-1393(99)00029-3. [DOI] [Google Scholar]
- 34.Convey P, McInnes SJ. Exceptional tardigrade-dominated ecosystems in Ellsworth land. Antarctica Ecology. 2005;86:519–527. doi: 10.1890/04-0684. [DOI] [Google Scholar]
- 35.Collins GE, Hogg ID, Convey P, Barnes AD, McDonald IR. Spatial and temporal scales matter when assessing the species and genetic diversity of Springtails (Collembola) in Antarctica. Front Ecol Evol. 2019;7:76. doi: 10.3389/fevo.2019.00076. [DOI] [Google Scholar]
- 36.Carapelli A, Cucini C, Fanciulli PP, Frati F, Convey P, Nardi F. Molecular comparison among three Antarctic endemic Springtail species and description of the mitochondrial genome of Friesea gretae (Hexapoda, Collembola) Diversity. 2020;12:450. doi: 10.3390/d12120450. [DOI] [Google Scholar]
- 37.Stevens MI, Mackintosh AN. Location, location, location: survival of Antarctic biota requires the best real estate. Biol Lett. 2023;19:20220590. doi: 10.1098/rsbl.2022.0590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Sohm JA, Niederberger TD, Parker AE, Tirindelli J, Gunderson T, Cary SC, et al. Microbial mats of the McMurdo dry valleys, Antarctica: oases of biological activity in a very cold desert. Front Microbiol. 2020;11:537960. doi: 10.3389/fmicb.2020.537960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Bottos EM, Laughlin DC, Herbold CW, Lee CK, McDonald IR, Cary SC. Abiotic factors influence patterns of bacterial diversity and community composition in the dry valleys of Antarctica. FEMS Microbiol Ecol. 2020;96:fiaa042. doi: 10.1093/femsec/fiaa042. [DOI] [PubMed] [Google Scholar]
- 40.Niederberger TD, Bottos EM, Sohm JA, Gunderson T, Parker A, Coyne KJ, et al. Rapid microbial dynamics in response to an induced wetting event in Antarctic dry valley soils. Front Microbiol. 2019;10:621. doi: 10.3389/fmicb.2019.00621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Papale M, Conte A, Mikkonen A, Michaud L, La Ferla R, Azzaro M, et al. Prokaryotic assemblages within permafrost active layer at Edmonson Point (Northern Victoria Land, Antarctica) Soil Biol Biochem. 2018;123:165–179. doi: 10.1016/j.soilbio.2018.05.004. [DOI] [Google Scholar]
- 42.Leihy RI, Coetzee BWT, Morgan F, Raymond B, Shaw JD, Terauds A, et al. Antarctica’s wilderness fails to capture continent’s biodiversity. Nature. 2020;583:567–571. doi: 10.1038/s41586-020-2506-3. [DOI] [PubMed] [Google Scholar]
- 43.Gutt J, Isla E, Xavier JC, Adams BJ, Ahn I, Cheng C-HC, et al. Antarctic ecosystems in transition – life between stresses and opportunities. Biol Rev. 2021;96:798–821. doi: 10.1111/brv.12679. [DOI] [PubMed] [Google Scholar]
- 44.Duffy GA, Lee JR. Ice-free area expansion compounds the non-native species threat to Antarctic terrestrial biodiversity. Biol Conserv. 2019;232:253–257. doi: 10.1016/j.biocon.2019.02.014. [DOI] [Google Scholar]
- 45.Hughes KA, Pescott OL, Peyton J, Adriaens T, Cottier-Cook EJ, Key G, et al. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob Change Biol. 2020;26:2702–2716. doi: 10.1111/gcb.14938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, et al. Impacts of local human activities on the Antarctic environment. Antarct Sci. 2009;21:3–33. doi: 10.1017/S0954102009001722. [DOI] [Google Scholar]
- 47.Pertierra LR, Hughes KA, Vega GC, Olalla-Tárraga MÁ. High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of Avifauna. Peter H-U, editor. PLOS ONE. 2017;12:e0168280. doi: 10.1371/journal.pone.0168280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Brooks ST, Jabour J, van den Hoff J, Bergstrom DM. Our footprint on Antarctica competes with nature for rare ice-free land. Nat Sustain. 2019;2:185–90. doi: 10.1038/s41893-019-0237-y. [DOI] [Google Scholar]
- 49.Huiskes AHL, Convey P, Bergstrom DM. Trends in Antarctic terrestrial and limnetic ecosystems: antarctica as a global indicator. In: Bergstrom DM, Convey P, Huiskes AHL, editors. Trends Antarct Terr Limnetic Ecosyst. Dordrecht: Springer Netherlands; 2006. p. 1–13. Available from: 10.1007/1-4020-5277-4_1. Cited 4 Jul 2023.
- 50.Chown SL, Brooks CM, Terauds A, Le Bohec C, van Klaveren-Impagliazzo C, Whittington JD, et al. Antarctica and the strategic plan for biodiversity. PLOS Biol. 2017;15:e2001656. doi: 10.1371/journal.pbio.2001656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Kennicutt MC, Bromwich D, Liggett D, Njåstad B, Peck L, Rintoul SR, et al. Sustained Antarctic research: a 21st century imperative. One Earth. 2019;1:95–113. doi: 10.1016/j.oneear.2019.08.014. [DOI] [Google Scholar]
- 52.Terauds A, Chown SL, Morgan F, J. Peat H, Watts DJ, Keys H, et al. Conservation biogeography of the Antarctic. Divers Distrib. 2012;18:726–41.
- 53.Terauds A, Lee JR. Antarctic biogeography revisited: updating the Antarctic conservation biogeographic regions. Heikkinen R, editor. Divers Distrib. 2016;22:836–40. doi: 10.1111/ddi.12453. [DOI] [Google Scholar]
- 54.Verleyen E, Van De Vijver B, Tytgat B, Pinseel E, Hodgson DA, Kopalová K, et al. Diatoms define a novel freshwater biogeography of the Antarctic. Ecography. 2021;44:548–560. doi: 10.1111/ecog.05374. [DOI] [Google Scholar]
- 55.Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC. The inter-valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J. 2012;6:1046–1057. doi: 10.1038/ismej.2011.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Archer SDJ, Lee KC, Caruso T, Maki T, Lee CK, Cary SC, et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat Microbiol. 2019;4:925–932. doi: 10.1038/s41564-019-0370-4. [DOI] [PubMed] [Google Scholar]
- 57.Dennis PG, Newsham KK, Rushton SP, O’Donnell AG, Hopkins DW. Soil bacterial diversity is positively associated with air temperature in the maritime Antarctic. Sci Rep. 2019;9:2686. doi: 10.1038/s41598-019-39521-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Almela P, Justel A, Quesada A. Heterogeneity of microbial communities in soils from the Antarctic Peninsula region. Front Microbiol. 2021;12:628792. doi: 10.3389/fmicb.2021.628792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Lebre PH, Bosch J, Coclet C, Hallas R, Hogg ID, Johnson J, et al. Expanding Antarctic biogeography: microbial ecology of Antarctic island soils. Ecography. 2023:e06568. 10.1111/ecog.06568.
- 60.Smith JL, Barrett JE, Tusnády G, Rejtö L, Cary SC. Resolving environmental drivers of microbial community structure in Antarctic soils. Antarct Sci. 2010;22:673–680. doi: 10.1017/S0954102010000763. [DOI] [Google Scholar]
- 61.Severgnini M, Canini F, Consolandi C, Camboni T, Paolo D’Acqui L, Mascalchi C, et al. Highly differentiated soil bacterial communities in Victoria Land macro-areas (Antarctica) FEMS Microbiol Ecol. 2021;97:fiab087. doi: 10.1093/femsec/fiab087. [DOI] [PubMed] [Google Scholar]
- 62.Chong CW, Pearce DA, Convey P, Tan GYA, Wong RCS, Tan IKP. High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island. Antarctica Soil Biol Biochem. 2010;42:601–610. doi: 10.1016/j.soilbio.2009.12.009. [DOI] [Google Scholar]
- 63.Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, et al. Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci. 2010;4:103–113. doi: 10.1016/j.polar.2010.03.006. [DOI] [Google Scholar]
- 64.Pessi IS, Lara Y, Durieu B, Maalouf P de C, Verleyen E, Wilmotte A. Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiol Ecol. 2018;94. Available from: 10.1093/femsec/fiy042/4935156. Cited 17 Feb 2022. [DOI] [PubMed]
- 65.Tschitschko B, Erdmann S, DeMaere MZ, Roux S, Panwar P, Allen MA, et al. Genomic variation and biogeography of Antarctic haloarchaea. Microbiome. 2018;6:113. doi: 10.1186/s40168-018-0495-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Jung P, Briegel-Williams L, Schermer M, Büdel B. Strong in combination: polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism. MicrobiologyOpen. 2019;8:e00729. doi: 10.1002/mbo3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Velichko N, Smirnova S, Averina S, Pinevich A. A survey of Antarctic cyanobacteria. Hydrobiologia. 2021;848:2627–2652. doi: 10.1007/s10750-021-04588-9. [DOI] [Google Scholar]
- 68.Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JAE, Davies KA, Austin AD, et al. Distribution and diversity of soil microfauna from East Antarctica: assessing the link between biotic and abiotic factors. Wang X, editor. PLoS ONE. 2014;9:e87529. doi: 10.1371/journal.pone.0087529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Czechowski P, White D, Clarke L, McKay A, Cooper A, Stevens MI. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains. East Antarctica R Soc Open Sci. 2016;3:160296. doi: 10.1098/rsos.160296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Czechowski P, Clarke LJ, Breen J, Cooper A, Stevens MI. Antarctic eukaryotic soil diversity of the Prince Charles Mountains revealed by high-throughput sequencing. Soil Biol Biochem. 2016;95:112–121. doi: 10.1016/j.soilbio.2015.12.013. [DOI] [Google Scholar]
- 71.Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Hijmans RJ. terra: spatial data analysis. R package version 1.6–47. 2022. Available from: https://CRAN.R-project.org/package=terra.
- 73.R Core Team. R: a language and environment for statistical computing. 2022. Available from: https://www.R-project.org/
- 74.Howat I, Porter C, Noh M-J, Husby E, Khuvis S, Danish E, et al. The reference elevation model of Antarctica - mosaics, version 2. Harvard Dataverse; 2022. Available from: 10.7910/DVN/EBW8UC.
- 75.QGIS.org. QGIS geographic information system. QGIS Association.; 2023. Available from: http://www.qgis.org.
- 76.Matsuoka K, Skoglund A, Roth G, de Pomereu J, Griffiths H, Headland R, et al. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environ Model Softw. 2021;140:105015. doi: 10.1016/j.envsoft.2021.105015. [DOI] [Google Scholar]
- 77.Chown SL, Convey P. Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philos Trans R Soc B Biol Sci. 2007;362:2307–2331. doi: 10.1098/rstb.2006.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Tytgat B, Verleyen E, Sweetlove M, D'hondt S, Clercx P, Van Ranst E, et al. Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. Häggblom M, editor. FEMS Microbiol Ecol. 2016;92:fiw126. doi: 10.1093/femsec/fiw126. [DOI] [PubMed] [Google Scholar]
- 79.Borsetto C, Amos GCA, da Rocha UN, Mitchell AL, Finn RD, Laidi RF, et al. Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome. 2019;7:78. doi: 10.1186/s40168-019-0692-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Meier LA, Krauze P, Prater I, Horn F, Schaefer CEGR, Scholten T, et al. Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island. Antarctic Peninsula region Biogeosciences. 2019;16:2481–2499. [Google Scholar]
- 81.Staebe K, Meiklejohn KI, Singh SM, Matcher GF. Biogeography of soil bacterial populations in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land. Antarctica Polar Biol. 2019;42:1445–1458. doi: 10.1007/s00300-019-02532-1. [DOI] [Google Scholar]
- 82.Dragone NB, Diaz MA, Hogg ID, Lyons WB, Jackson WA, Wall DH, et al. Exploring the boundaries of microbial habitability in soil. J Geophys Res Biogeosciences. 2021;126. Available from: 10.1029/2020JG006052. Cited 28 Jul 2022.
- 83.Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem MW, et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci. 2021;118:e2025322118. doi: 10.1073/pnas.2025322118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Solon AJ, Mastrangelo C, Vimercati L, Sommers P, Darcy JL, Gendron EMS, et al. Gullies and moraines are islands of biodiversity in an arid, mountain landscape, asgard range. Antarctica Front Microbiol. 2021;12:654135. doi: 10.3389/fmicb.2021.654135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Ji M, Kong W, Jia H, Delgado-Baquerizo M, Zhou T, Liu X, et al. Polar soils exhibit distinct patterns in microbial diversity and dominant phylotypes. Soil Biol Biochem. 2022;166:108550. doi: 10.1016/j.soilbio.2022.108550. [DOI] [Google Scholar]
- 86.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Davis NM. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. 2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Watson M, editor. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Varliero G, Lebre PH, Stevens MI, Czechowski P, Makhalanyane T, Cowan DA. The use of different 16S rRNA gene variable regions in biogeographical studies. Environ Microbiol Rep. 2023;15:216–28. [DOI] [PMC free article] [PubMed]
- 92.Thompson R, Sanders JG, Amir A, Ladau J, Locey KJ, Prill RJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–463. doi: 10.1038/nature24621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Beule L, Karlovsky P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ. 2020;8:e9593. doi: 10.7717/peerj.9593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan: community ecology package. 2022. Available from: https://CRAN.R-project.org/package=vegan.
- 95.Martinez Arbizu P. pairwiseAdonis: pairwise multilevel comparison using Adonis. 2020. Available from: https://github.com/pmartinezarbizu/pairwiseAdonis.
- 96.Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. [Google Scholar]
- 97.Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Schwartz R, editor. Bioinformatics. 2019;35:526–8. doi: 10.1093/bioinformatics/bty633. [DOI] [PubMed] [Google Scholar]
- 98.Hijmans RJ. geosphere: spherical trigonometry. R package version 1.5–18. 2022. Available from: https://CRAN.R-project.org/package=geosphere.
- 99.Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31:3718–3720. doi: 10.1093/bioinformatics/btv428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
- 101.Kim S. ppcor: partial and semi-partial (part) correlation. 2015. Available from: https://CRAN.R-project.org/package=ppcor.
- 102.Archer E. rfPermute: estimate permutation p-values for random forest importance metrics. 2022. Available from: https://CRAN.R-project.org/package=rfPermute.
- 103.Liu C, Cui Y, Li X, Yao M. microeco : an R package for data mining in microbial community ecology. FEMS Microbiol Ecol. 2021;97:fiaa255. doi: 10.1093/femsec/fiaa255. [DOI] [PubMed] [Google Scholar]
- 104.Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70. [Google Scholar]
- 105.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org.
- 106.Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: various R programming tools for plotting data. 2022. Available from: https://CRAN.R-project.org/package=gplots.
- 107.Auguie B. gridExtra: miscellaneous functions for “grid” graphics. 2017. Available from: https://CRAN.R-project.org/package=gridExtra.
- 108.Urbanek S, Horner J. Cairo: R graphics device using cairo graphics library for creating high-quality Bitmap (PNG, JPEG, TIFF), Vector (PDF, SVG, PostScript) and Display (X11 and Win32) Output. 2020. Available from: https://CRAN.R-project.org/package=Cairo.
- 109.Bittinger K. usedist: distance matrix utilities. 2023. Available from: https://cran.r-project.org/package=usedist/.
- 110.Doytchinov VV, Dimov SG. Microbial community composition of the Antarctic ecosystems: review of the bacteria, fungi, and archaea identified through an NGS-based metagenomics approach. Life. 2022;12:916. doi: 10.3390/life12060916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Dragone NB, Diaz MA, Hogg ID, Lyons WB, Jackson WA, Wall DH, et al. Exploring the boundaries of microbial habitability in soil. J Geophys Res Biogeosciences. 2021;126. Available from: 10.1029/2020JG006052. Cited 27 Jul 2022.
- 112.Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol. 2007;9:2670–2682. doi: 10.1111/j.1462-2920.2007.01379.x. [DOI] [PubMed] [Google Scholar]
- 113.Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, et al. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley. Antarctica ISME J. 2016;10:1613–1624. doi: 10.1038/ismej.2015.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Rego A, Raio F, Martins TP, Ribeiro H, Sousa AGG, Séneca J, et al. Actinobacteria and Cyanobacteria diversity in terrestrial antarctic microenvironments evaluated by culture-dependent and independent methods. Front Microbiol. 2019;10:1018. doi: 10.3389/fmicb.2019.01018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Nikrad MP, Kerkhof LJ, Häggblom MM. The subzero microbiome: microbial activity in frozen and thawing soils. Muyzer G, editor. FEMS Microbiol Ecol. 2016;92:fiw081. doi: 10.1093/femsec/fiw081. [DOI] [PubMed] [Google Scholar]
- 116.Barnard S, Van Goethem MW, de Scally SZ, Cowan DA, van Rensburg PJ, Claassens S, et al. Increased temperatures alter viable microbial biomass, ammonia oxidizing bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiol Ecol. 2020;96:fiaa065. doi: 10.1093/femsec/fiaa065. [DOI] [PubMed] [Google Scholar]
- 117.Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, Cary SC. Airborne bacterial populations above desert soils of the McMurdo dry valleys. Antarctica Microb Ecol. 2014;67:120–128. doi: 10.1007/s00248-013-0296-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Jackson AC, Jorna J, Chaston JM, Adams BJ. Glacial legacies: microbial communities of Antarctic refugia. Biology. 2022;11:1440. doi: 10.3390/biology11101440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Magalhães C, Stevens MI, Cary SC, Ball BA, Storey BC, Wall DH, et al. At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica. De Bello F, editor. PLoS ONE. 2012;7:e44578. doi: 10.1371/journal.pone.0044578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem. 2014;78:10–20. doi: 10.1016/j.soilbio.2014.07.005. [DOI] [Google Scholar]
- 121.Alekseev I, Zverev A, Abakumov E. Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: environmental controls and effect of human impact. Microorganisms. 2020;8:1202. doi: 10.3390/microorganisms8081202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Waldrop MP, Holloway JM, Smith DB, Goldhaber MB, Drenovsky RE, Scow KM, et al. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology. 2017;98:1957–1967. doi: 10.1002/ecy.1883. [DOI] [PubMed] [Google Scholar]
- 123.Li S, Wang P, Chen Y, Wilson MC, Yang X, Ma C, et al. Island biogeography of soil bacteria and fungi: similar patterns, but different mechanisms. ISME J. 2020;14:1886–1896. doi: 10.1038/s41396-020-0657-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Canini F, Geml J, Buzzini P, Turchetti B, Onofri S, D’Acqui LP, et al. Growth forms and functional guilds distribution of soil fungi in coastal versus inland sites of Victoria Land. Antarctica Biology. 2021;10:320. doi: 10.3390/biology10040320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, et al. Recent rapid regional climate warming on the Antarctic Peninsula. 2003. [Google Scholar]
- 126.Turner J, Bindschadler R, Convey P, Di Prisco G, Fahrbach E, Gutt J, et al., editors. Antarctic climate change and the environment: a contribution to the International Polar Year 2007–2008. Cambridge: Scientific Committee on Antarctic Research; 2009. [Google Scholar]
- 127.Brown MS, Munro DR, Feehan CJ, Sweeney C, Ducklow HW, Schofield OM. Enhanced oceanic CO2 uptake along the rapidly changing West Antarctic Peninsula. Nat Clim Change. 2019;9:678–683. doi: 10.1038/s41558-019-0552-3. [DOI] [Google Scholar]
- 128.Lee JR, Raymond B, Bracegirdle TJ, Chadès I, Fuller RA, Shaw JD, et al. Climate change drives expansion of Antarctic ice-free habitat. Nature. 2017;547:49–54. doi: 10.1038/nature22996. [DOI] [PubMed] [Google Scholar]
- 129.Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci. 2010;107:13479–13484. doi: 10.1073/pnas.1003860107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–403. doi: 10.1038/nature25014. [DOI] [PubMed] [Google Scholar]
- 131.Kumar M, Zeyad MT, Choudhary P, Paul S, Chakdar H, Rajawat MVS. Chapter 26 - Thiobacillus. In: Amaresan N, Kumar MS, Annapurna K, Kumar K, Sankaranarayanan A, editors. Benef Microbes Agro-Ecol. Academic Press; 2020. p. 545–57. Available from: https://www.sciencedirect.com/science/article/pii/B9780128234143000265.
- 132.Hiraishi A, Imhoff JF. Rhodoferax. Bergeys Man Syst Archaea Bact. John Wiley & Sons, Ltd; 2015. p. 1–11. Available from: 10.1002/9781118960608.gbm00951.
- 133.Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci. 2004;101:4631–4636. doi: 10.1073/pnas.0400522101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Feng J, Zeng X-M, Zhang Q, Zhou X-Q, Liu Y-R, Huang Q. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 2021;1:71. doi: 10.1038/s43705-021-00076-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Kim D, Park HJ, Kim M, Lee S, Hong SG, Kim E, et al. Temperature sensitivity of Antarctic soil-humic substance degradation by cold-adapted bacteria. Environ Microbiol. 2022;24:265–275. doi: 10.1111/1462-2920.15849. [DOI] [PubMed] [Google Scholar]
- 136.Raymond JA. Dependence on epiphytic bacteria for freezing protection in an Antarctic moss. Bryum argenteum Environ Microbiol Rep. 2016;8:14–19. doi: 10.1111/1758-2229.12337. [DOI] [PubMed] [Google Scholar]
- 137.Bakermans C, Skidmore ML, Douglas S, McKay CP. Molecular characterization of bacteria from permafrost of the Taylor Valley. Antarctica FEMS Microbiol Ecol. 2014;89:331–346. doi: 10.1111/1574-6941.12310. [DOI] [PubMed] [Google Scholar]
- 138.Gosink JJ. Polaromonas. Bergeys Man Syst Archaea Bact. John Wiley & Sons, Ltd; 2015. p. 1–6. Available from: 10.1002/9781118960608.gbm00950.
- 139.Bowman JS. Identification of microbial dark matter in Antarctic environments. Front Microbiol. 2018;9:3165. doi: 10.3389/fmicb.2018.03165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Kulichevskaya IS, Suzina NE, Liesack W, Dedysh SN. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. Int J Syst Evol Microbiol. 2010;60:301–6. doi: 10.1099/ijs.0.013250-0. [DOI] [PubMed] [Google Scholar]
- 141.Falagán C, Johnson DB. Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles. 2014;18:1067–73. doi: 10.1007/s00792-014-0684-3. [DOI] [PubMed] [Google Scholar]
- 142.Xue L, Ren H, Li S, Leng X, Yao X. Soil bacterial community structure and co-occurrence pattern during vegetation restoration in Karst rocky desertification area. Front Microbiol. 2017;8:2377. doi: 10.3389/fmicb.2017.02377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Panthee S, Hamamoto H, Paudel A, Sekimizu K. Lysobacter species: a potential source of novel antibiotics. Arch Microbiol. 2016;198:839–845. doi: 10.1007/s00203-016-1278-5. [DOI] [PubMed] [Google Scholar]
- 144.Zhang Q, Goberna M, Liu Y, Cui M, Yang H, Sun Q, et al. Competition and habitat filtering jointly explain phylogenetic structure of soil bacterial communities across elevational gradients. Environ Microbiol. 2018;20:2386–2396. doi: 10.1111/1462-2920.14247. [DOI] [PubMed] [Google Scholar]
- 145.Lee JR, Waterman MJ, Shaw JD, Bergstrom DM, Lynch HJ, Wall DH, et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Glob Change Biol. 2022;28:5865–5880. doi: 10.1111/gcb.16331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Sokol ER, Herbold CW, Lee CK, Cary SC, Barrett JE. Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere. 2013;4:art136. doi: 10.1890/ES13-00136.1. [DOI] [Google Scholar]
- 147.Diaz MA, Gardner CB, Welch SA, Jackson WA, Adams BJ, Wall DH, et al. Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains. Antarctica Biogeosciences. 2021;18:1629–1644. doi: 10.5194/bg-18-1629-2021. [DOI] [Google Scholar]
- 148.Chong CW, Goh YS, Convey P, Pearce D, Tan IKP. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates? Extremophiles. 2013;17:733–745. doi: 10.1007/s00792-013-0555-3. [DOI] [PubMed] [Google Scholar]
- 149.Coleine C, Pombubpa N, Zucconi L, Onofri S, Turchetti B, Buzzini P, et al. Uncovered microbial diversity in Antarctic cryptoendolithic communities sampling three representative locations of the Victoria Land. Microorganisms. 2020;8:942. doi: 10.3390/microorganisms8060942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Li W, Dore JE, Steigmeyer AJ, Cho Y, Kim O, Liu Y, et al. Methane production in the oxygenated water column of a perennially ice-covered Antarctic lake. Limnol Oceanogr. 2020;65:143–156. doi: 10.1002/lno.11257. [DOI] [Google Scholar]
- 151.Ramoneda J, Hawes I, Pascual-García A, Mackey TJ, Sumner DY, Jungblut DA. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol Ecol. 2021;97:fiab044. doi: 10.1093/femsec/fiab044. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
The datasets generated and/or analyzed during the current study are available in the National Center for Biotechnology Information (NCBI) repository under the accession PRJNA699250, PRJNA504513, PRJEB55870, PRJNA630822, PRJEB29853, PRJNA868884, PRJNA781801, PRJNA765625, PRJEB63224, PRJEB55309, PRJNA678471, PRJEB11689, PRJNA684555, PRJNA721735, PRJNA359740, and SRP067111 and also at https://data.bioplatforms.com/organization/australian-microbiome. The R scripts used for the analysis of the sequencing data can be found on the GitHub page https://github.com/gvMicroarctic/AntarcticBiogeographyPaper.