Abstract
Hydroponically grown tomato plants (Lycopersicon esculentum P. Mill. cv Golden Boy) exposed to 100 micromolar cadmium sulfate produced metal-(γEC)nG peptide complexes containing acid-labile sulfur. The properties of the complexes resemble those of the cadmium-(γEC)nG peptide complexes from Schizosaccharomyces pombe and Candida glabrata known to contain a cadmium sulfide crystallite core. The crystallite is stabilized by a sheath of peptides of general structure (γGlu-Cys)n-Gly. The cadmium-peptide complexes of tomato contained predominantly peptides of n3, n4, and n5. spectroscopic analyses indicated that the tomato cadmium-sulfide-peptide complex contained CdS crystallite core particles smaller than 2.0 nanometers in diameter.
Full text
PDF![225](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea02/1080173/aaa4cc7c060a/plntphys00700-0241.png)
![226](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea02/1080173/3f1abac5d105/plntphys00700-0242.png)
![227](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea02/1080173/c6a051dcc1c7/plntphys00700-0243.png)
![228](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea02/1080173/479c803118a6/plntphys00700-0244.png)
![229](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea02/1080173/b74b6bbfe6e8/plntphys00700-0245.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dameron C. T., Smith B. R., Winge D. R. Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. J Biol Chem. 1989 Oct 15;264(29):17355–17360. [PubMed] [Google Scholar]
- Fett W. F., Dunn M. F. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. doi: 10.1104/pp.89.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grill E., Löffler S., Winnacker E. L., Zenk M. H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838–6842. doi: 10.1073/pnas.86.18.6838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grill E., Winnacker E. L., Zenk M. H. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A. 1987 Jan;84(2):439–443. doi: 10.1073/pnas.84.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grill E., Winnacker E. L., Zenk M. H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science. 1985 Nov 8;230(4726):674–676. doi: 10.1126/science.230.4726.674. [DOI] [PubMed] [Google Scholar]
- Hayashi Y., Nakagawa C. W., Murasugi A. Unique properties of Cd-binding peptides induced in fission yeast, Schizosaccharomyces pombe. Environ Health Perspect. 1986 Mar;65:13–19. doi: 10.1289/ehp.866513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson P. J., Unkefer C. J., Doolen J. A., Watt K., Robinson N. J. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6619–6623. doi: 10.1073/pnas.84.19.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murasugi A., Wada Nakagawa C., Hayashi Y. Formation of cadmium-binding peptide allomorphs in fission yeast. J Biochem. 1984 Nov;96(5):1375–1379. doi: 10.1093/oxfordjournals.jbchem.a134965. [DOI] [PubMed] [Google Scholar]
- Mutoh N., Hayashi Y. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun. 1988 Feb 29;151(1):32–39. doi: 10.1016/0006-291x(88)90555-4. [DOI] [PubMed] [Google Scholar]
- Nussbaum S., Schmutz D., Brunold C. Regulation of Assimilatory Sulfate Reduction by Cadmium in Zea mays L. Plant Physiol. 1988 Dec;88(4):1407–1410. doi: 10.1104/pp.88.4.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
- Reese R. N., Mehra R. K., Tarbet E. B., Winge D. R. Studies on the gamma-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J Biol Chem. 1988 Mar 25;263(9):4186–4192. [PubMed] [Google Scholar]
- Reese R. N., Wagner G. J. Properties of tobacco (Nicotiana tabacum) cadmium-binding peptide(s). Unique non-metallothionein cadmium ligands. Biochem J. 1987 Feb 1;241(3):641–647. doi: 10.1042/bj2410641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reese R. N., Winge D. R. Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem. 1988 Sep 15;263(26):12832–12835. [PubMed] [Google Scholar]
- Steffens J. C., Hunt D. F., Williams B. G. Accumulation of non-protein metal-binding polypeptides (gamma-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. J Biol Chem. 1986 Oct 25;261(30):13879–13882. [PubMed] [Google Scholar]
- Wagner G. J., Yeargan R. Variation in cadmium accumulation potential and tissue distribution of cadmium in tobacco. Plant Physiol. 1986 Sep;82(1):274–279. doi: 10.1104/pp.82.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber D. N., Shaw C. F., 3rd, Petering D. H. Euglena gracilis cadmium-binding protein-II contains sulfide ion. J Biol Chem. 1987 May 25;262(15):6962–6964. [PubMed] [Google Scholar]