Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jan 4:2024.01.03.574060. [Version 1] doi: 10.1101/2024.01.03.574060

Complementation testing identifies causal genes at quantitative trait loci underlying fear related behavior

Patrick B Chen, Rachel Chen, Nathan LaPierre, Zeyuan Chen, Joel Mefford, Emilie Marcus, Matthew G Heffel, Daniela C Soto, Jason Ernst, Chongyuan Luo, Jonathan Flint
PMCID: PMC10802323  PMID: 38260483

ABSTRACT

Knowing the genes involved in quantitative traits provides a critical entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. Here we address a key step towards that goal by deploying a test that directly queries whether a gene mediates the effect of a quantitative trait locus (QTL). To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six QTLs, and identified six genes. Four genes, Lsamp, Ptprd, Nptx2 and Sh3gl, have known roles in synapse function; the fifth gene, Psip1, is a transcriptional co-activator not previously implicated in behavior; the sixth is a long non-coding RNA 4933413L06Rik with no known function. Single nucleus transcriptomic and epigenetic analyses implicated excitatory neurons as likely mediating the genetic effects. Surprisingly, variation in transcriptome and epigenetic modalities between inbred strains occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results open a bottleneck in using genetic mapping of QTLs to find novel biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES