Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Feb;98(2):639–645. doi: 10.1104/pp.98.2.639

Differential Inhibition by Ferulic Acid of Nitrate and Ammonium Uptake in Zea mays L. 1

Christine L Bergmark 1,2, William A Jackson 1,2, Richard J Volk 1,2, Udo Blum 1,2
PMCID: PMC1080238  PMID: 16668689

Abstract

The influence of the allelopathic compound ferulic acid (FA) on nitrogen uptake from solutions containing both NO3 and NH4+ was examined in 8-day-old nitrogen-depleted corn (Zea mays L.) seedlings. Concurrent effects on uptake of Cl and K+ also were assessed. The presence of 250 micromolar FA inhibited the initial (0-1 hours) rate of NO3 uptake and also prevented development of the NO3-inducible accelerated rate. The pattern of recovery when FA was removed was interpreted as indicating a rapid relief of FA-restricted NO3 uptake activity, followed by a reinitiation of the induction of that activity. No inhibition of NO3 reduction was detected. Ammonium uptake was less sensitive than NO3 uptake to inhibition by FA. An inhibition of Cl uptake occurred as induction of the NO3 transport system developed in the absence of FA. Alterations of Cl uptake in the presence of FA were, therefore, a result of a beneficial effect, because NO3 uptake was restricted, and a direct inhibitory effect. The presence of FA increased the initial net K+ loss from the roots during exposure to the low K, ammonium nitrate uptake solution and delayed the recovery to positive net uptake, but it did not alter the general pattern of the response. The implications of the observations are discussed for growth of plants under natural conditions and cultural practices that foster periodic accumulation of allelopathic substances.

Full text

PDF
639

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ezeta F. N., Jackson W. A. Nitrate translocation by detopped corn seedlings. Plant Physiol. 1975 Jul;56(1):148–156. doi: 10.1104/pp.56.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Glass A. D. Influence of Phenolic Acids on Ion Uptake: IV. Depolarization of Membrane Potentials. Plant Physiol. 1974 Dec;54(6):855–858. doi: 10.1104/pp.54.6.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Glass A. D. Influence of phenolic acids on ion uptake: I. Inhibition of phosphate uptake. Plant Physiol. 1973 Jun;51(6):1037–1041. doi: 10.1104/pp.51.6.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harper J. R., Balke N. E. Characterization of the inhibition of k absorption in oat roots by salicylic Acid. Plant Physiol. 1981 Dec;68(6):1349–1353. doi: 10.1104/pp.68.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jackson W. A., Flesher D., Hageman R. H. Nitrate Uptake by Dark-grown Corn Seedlings: Some Characteristics of Apparent Induction. Plant Physiol. 1973 Jan;51(1):120–127. doi: 10.1104/pp.51.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mackown C. T., McClure P. R. Development of accelerated net nitrate uptake : effects of nitrate concentration and exposure time. Plant Physiol. 1988 May;87(1):162–166. doi: 10.1104/pp.87.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McClure P. R., Kochian L. V., Spanswick R. M., Shaff J. E. Evidence for cotransport of nitrate and protons in maize roots : I. Effects of nitrate on the membrane potential. Plant Physiol. 1990 May;93(1):281–289. doi: 10.1104/pp.93.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Smith F. W., Jackson W. A. Nitrogen Enhancement of Phosphate Transport in Roots of Zea mays L. : I. Effects of Ammonium and Nitrate Pretreatment. Plant Physiol. 1987 Aug;84(4):1314–1318. doi: 10.1104/pp.84.4.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Vessey J. K., Henry L. T., Chaillou S., Raper C. D., Jr Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources. J Plant Nutr. 1990;13(1):95–116. doi: 10.1080/01904169009364061. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES