Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Feb;98(2):745–748. doi: 10.1104/pp.98.2.745

Abscisic Acid Increases Terrestrial Plant Cell Resistance to Hydrostatic Pressure 1

Karen K Tanino 1,2, Tony H H Chen 1,2, Leslie H Fuchigami 1,2, Conrad J Weiser 1,2
PMCID: PMC1080253  PMID: 16668704

Abstract

Cells of the terrestrial plant species bromegrass (Bromus inermis L.) are not naturally adapted to withstand the hydrostatic pressures encountered in aquatic environments. However, after treatment with the natural plant growth hormone abscisic acid (75 micromolar), bromegrass cells survived a hydrostatic pressure of 101.3 megapascals, approximating the limits of ocean depth (10,860 m). The increased resistance to hydrostatic pressure from 1 to 7 days of abscisic acid treatment paralleled the induced elevation of cell tolerance to freezing stress.

Full text

PDF
745

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartlett D., Wright M., Yayanos A. A., Silverman M. Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature. 1989 Nov 30;342(6249):572–574. doi: 10.1038/342572a0. [DOI] [PubMed] [Google Scholar]
  2. Bernhardt G., Jaenicke R., Lüdemann H. D., König H., Stetter K. O. High Pressure Enhances the Growth Rate of the Thermophilic Archaebacterium Methanococcus thermolithotrophicus without Extending Its Temperature Range. Appl Environ Microbiol. 1988 May;54(5):1258–1261. doi: 10.1128/aem.54.5.1258-1261.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen T. H., Gusta L. V. Abscisic Acid-induced freezing resistance in cultured plant cells. Plant Physiol. 1983 Sep;73(1):71–75. doi: 10.1104/pp.73.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chong P. L., Cossins A. R., Weber G. A differential polarized phase fluorometric study of the effects of high hydrostatic pressure upon the fluidity of cellular membranes. Biochemistry. 1983 Jan 18;22(2):409–415. doi: 10.1021/bi00271a026. [DOI] [PubMed] [Google Scholar]
  5. DeLong E. F., Yayanos A. A. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science. 1985 May 31;228(4703):1101–1103. doi: 10.1126/science.3992247. [DOI] [PubMed] [Google Scholar]
  6. Swezey R. R., Somero G. N. Polymerization thermodynamics and structural stabilities of skeletal muscle actins from vertebrates adapted to different temperatures and hydrostatic pressures. Biochemistry. 1982 Aug 31;21(18):4496–4503. doi: 10.1021/bi00261a047. [DOI] [PubMed] [Google Scholar]
  7. Widholm J. M. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 1972 Jul;47(4):189–194. doi: 10.3109/10520297209116483. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES