Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Mar;98(3):822–826. doi: 10.1104/pp.98.3.822

Gametic Differentiation of Chlamydomonas reinhardtii 1

Control by Nitrogen and Light

Christoph F Beck 1, Axel Acker 1
PMCID: PMC1080275  PMID: 16668754

Abstract

Gametic differentiation of the unicellular green alga Chlamydomonas reinhardtii proceeds in two steps controlled by the extrinsic signals nitrogen deficiency and light. Nitrogen deprivation induces the differentiation of vegetative cells to sexually immature pregametes. A light signal is required to convert the pregametes to gametes. Both signals are also required for the maintenance of mating competence. Two converging signal transduction chains are proposed to control gamete formation. For the differentiation of pregametes to gametes, a fluence rate-dependent reaction, requiring continuous irradiation, is suggested by photobiological experiments.

Full text

PDF
822

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair W. S. Characterization of Chlamydomonas sexual agglutinins. J Cell Sci Suppl. 1985;2:233–260. doi: 10.1242/jcs.1985.supplement_2.13. [DOI] [PubMed] [Google Scholar]
  2. Bulté L., Bennoun P. Translational accuracy and sexual differentiation in Chlamydomonas reinhardtii. Curr Genet. 1990 Aug;18(2):155–160. doi: 10.1007/BF00312603. [DOI] [PubMed] [Google Scholar]
  3. Friedmann I., Colwin A. L., Colwin L. H. Fine-structural aspects of fertilization in Chlamydomonas reinhardi. J Cell Sci. 1968 Mar;3(1):115–128. doi: 10.1242/jcs.3.1.115. [DOI] [PubMed] [Google Scholar]
  4. KATES J. R., JONES R. F. THE CONTROL OF GAMETIC DIFFERENTIATION IN LIQUID CULTURES OF CHLAMYDOMONAS. J Cell Physiol. 1964 Apr;63:157–164. doi: 10.1002/jcp.1030630204. [DOI] [PubMed] [Google Scholar]
  5. Kooijman R., de Wildt P., Homan W. L., Musgrave A., van den Ende H. Light Affects Flagellar Agglutinability in Chlamydomonas eugametos by Modification of the Agglutinin Molecules. Plant Physiol. 1988 Jan;86(1):216–223. doi: 10.1104/pp.86.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Martin N. C., Chiang K. S., Goodenough U. W. Turnover of chloroplast and cytoplasmic ribosomes during gametogenesis in Chlamydomonas reinhardi. Dev Biol. 1976 Jul 15;51(2):190–201. doi: 10.1016/0012-1606(76)90137-8. [DOI] [PubMed] [Google Scholar]
  7. Martin N. C., Goodenough U. W. Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. J Cell Biol. 1975 Dec;67(3):587–605. doi: 10.1083/jcb.67.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SAGER R., GRANICK S. Nutritional control of sexuality in Chlamydomonas reinhardi. J Gen Physiol. 1954 Jul 20;37(6):729–742. doi: 10.1085/jgp.37.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Siersma P. W., Chiang K. S. Conservation and degradation of cytoplasmic and chloroplast ribosomes in Chlamydomonas reinhardtii. J Mol Biol. 1971 May 28;58(1):167–185. doi: 10.1016/0022-2836(71)90239-7. [DOI] [PubMed] [Google Scholar]
  10. Wegener D., Treier U., Beck C. F. Procedures for the Generation of Mature Chlamydomonas reinhardtii Zygotes for Molecular and Biochemical Analyses. Plant Physiol. 1989 Jun;90(2):512–515. doi: 10.1104/pp.90.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Weissig H., Beck C. F. Action Spectrum for the Light-Dependent Step in Gametic Differentiation of Chlamydomonas reinhardtii. Plant Physiol. 1991 Sep;97(1):118–121. doi: 10.1104/pp.97.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES