Abstract
Several lines of evidence indicate that the partitioning of photosynthate between starch and sucrose is influenced by the relative concentrations of inorganic phosphate (Pi) in the cytosol and chloroplast. Two greenhouse experiments were conducted to determine the influence of long-term differences in soil P levels, ranging from deficient to supraoptimum, on leaf starch and sucrose concentrations, and activities of adenosine diphosphate glucose (ADPG) pyrophosphorylase and sucrose-phosphate synthase (SPS) during the grain filling period in soybean (Glycine max [L.] Merr.). It was hypothesized that, compared with optimum P nutrition, leaf starch and sucrose concentrations would be increased and decreased, respectively, for P deficiency and visa versa for supraoptimum P nutrition. Relative to the optimum soil P level, leaf Pi concentration was not altered by P deficiency but was increased two- to fourfold for the supraoptimum soil P treatment. The concentrations of leaf starch and sucrose were not markedly affected by any of the P fertility treatments and were not closely related to the activities of ADPG pyrophosphorylase and SPS. P deficiency resulted in increased activity of both enzymes in one of the experiments. The results indicated that long-term soil P treatments, that caused either large decreases in plant growth (P deficiency) or large increases in leaf Pi concentration (supraoptimum P), did not markedly alter starch and sucrose metabolism. Furthermore, it can be inferred that the method of plant culture and/or imposition of the P treatments is a critical factor in interpreting results of P nutrition studies.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birnberg P. R., Brenner M. L. A one-step enzymatic assay for sucrose with sucrose phosphorylase. Anal Biochem. 1984 Nov 1;142(2):556–561. doi: 10.1016/0003-2697(84)90505-0. [DOI] [PubMed] [Google Scholar]
- Chifflet S., Torriglia A., Chiesa R., Tolosa S. A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal Biochem. 1988 Jan;168(1):1–4. doi: 10.1016/0003-2697(88)90002-4. [DOI] [PubMed] [Google Scholar]
- Crafts-Brandner S. J. Phosphorus nutrition influence on leaf senescence in soybean. Plant Physiol. 1992 Mar;98(3):1128–1132. doi: 10.1104/pp.98.3.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doehlert D. C., Huber S. C. Regulation of Spinach Leaf Sucrose Phosphate Synthase by Glucose-6-Phosphate, Inorganic Phosphate, and pH. Plant Physiol. 1983 Dec;73(4):989–994. doi: 10.1104/pp.73.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fredeen A. L., Rao I. M., Terry N. Influence of Phosphorus Nutrition on Growth and Carbon Partitioning in Glycine max. Plant Physiol. 1989 Jan;89(1):225–230. doi: 10.1104/pp.89.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grabau L. J., Blevins D. G., Minor H. C. P Nutrition during Seed Development : Leaf Senescence, Pod Retention, and Seed Weight of Soybean. Plant Physiol. 1986 Dec;82(4):1008–1012. doi: 10.1104/pp.82.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heldt H. W., Chon C. J., Maronde D. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol. 1977 Jun;59(6):1146–1155. doi: 10.1104/pp.59.6.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lauer M. J., Blevins D. G., Sierzputowska-Gracz H. P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition. Plant Physiol. 1989 Apr;89(4):1331–1336. doi: 10.1104/pp.89.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino A., Mae T., Ohira K. Photosynthesis and Ribulose 1,5-Bisphosphate Carboxylase in Rice Leaves: Changes in Photosynthesis and Enzymes Involved in Carbon Assimilation from Leaf Development through Senescence. Plant Physiol. 1983 Dec;73(4):1002–1007. doi: 10.1104/pp.73.4.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radin J. W., Eidenbock M. P. Carbon Accumulation during Photosynthesis in Leaves of Nitrogen- and Phosphorus-Stressed Cotton. Plant Physiol. 1986 Nov;82(3):869–871. doi: 10.1104/pp.82.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rebeille F., Bligny R., Martin J. B., Douce R. Relationship between the cytoplasm and the vacuole phosphate pool in Acer pseudoplatanus cells. Arch Biochem Biophys. 1983 Aug;225(1):143–148. doi: 10.1016/0003-9861(83)90017-6. [DOI] [PubMed] [Google Scholar]
- Sowokinos J. R. Pyrophosphorylases in Solanum tuberosum: I. Changes in ADP-Glucose and UDP-Glucose Pyrophosphorylase Activities Associated with Starch Biosynthesis during Tuberization, Maturation, and Storage of Potatoes. Plant Physiol. 1976 Jan;57(1):63–68. doi: 10.1104/pp.57.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steup M., Peavey D. G., Gibbs M. The regulation of starch metabolism by inorganic phosphate. Biochem Biophys Res Commun. 1976 Oct 18;72(4):1554–1561. doi: 10.1016/s0006-291x(76)80191-x. [DOI] [PubMed] [Google Scholar]
- Treeby M. T., van Steveninck R. F., de Vries H. M. Quantitative Estimates of Phosphorus Concentrations within Lupinus luteus Leaflets by Means of Electron Probe X-ray Microanalysis. Plant Physiol. 1987 Oct;85(2):331–334. doi: 10.1104/pp.85.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]