Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Jun;99(2):765–770. doi: 10.1104/pp.99.2.765

Genetic Regulation of Development in Sorghum bicolor 1

VII. ma3r Flowering Mutant Lacks a Phytochrome that Predominates in Green Tissue

Kevin L Childs 1,2, Marie-Michèle Cordonnier-Pratt 1,2, Lee H Pratt 1,2, Page W Morgan 1,2
PMCID: PMC1080532  PMID: 16668953

Abstract

Phytochrome content of three near-isogenic genotypes of Sorghum bicolor was analyzed using immunological and spectrophotometric means. Seedlings of the photoperiodically sensitive genotypes 90M (Ma1Ma1, Ma2Ma2, ma3ma3) and 100M (Ma1Ma1, Ma2Ma2, Ma3Ma3) contain 126- and 123-kilodalton phytochromes. The 126-kilodalton protein is immunostained by antibodies Oat-16 and Pea-25. The 123-kilodalton phytochrome is immunostained by antibodies Pea-25 and Green-Oat-7. Seedlings of the photoperiodically insensitive genotype 58M (Ma1Ma1, Ma2Ma2, ma3rma3r) contain only the 126-kilodalton phytochrome. In 58M seedlings, 123-kilodalton phytochrome is not detected by either Pea-25 or Green-Oat-7. Deetiolation by white light causes the 126-kilodalton phytochrome to disappear but does not greatly affect the abundance of the 123-kilodalton phytochrome. In 58M, 90M, and 100M seedlings, the 126-kilodalton phytochrome is the most abundant in etiolated tissue, whereas the 123-kilodalton phytochrome of 90M and 100M seedlings predominates in green tissue. Spectrophotometric assays show that the bulk phytochrome of etiolated tissues of all three genotypes degrades similarly upon exposure to light. At least two phytochromes are detected in sorghum: a light-labile 126-kilodalton phytochrome that predominates in etiolated tissue and a 123-kilodalton phytochrome that predominates in green tissue. Photoperiodic control of flowering in sorghum is correlated with the presence of the 123-kilodalton phytochrome.

Full text

PDF
765

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamse P., Jaspers P. A., Bakker J. A., Kendrick R. E., Koornneef M. Photophysiology and phytochrome content of long-hypocotyl mutant and wild-type cucumber seedlings. Plant Physiol. 1988 May;87(1):264–268. doi: 10.1104/pp.87.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beall F. D., Morgan P. W., Mander L. N., Miller F. R., Babb K. H. Genetic Regulation of Development in Sorghum bicolor: V. The ma(3) Allele Results in Gibberellin Enrichment. Plant Physiol. 1991 Jan;95(1):116–125. doi: 10.1104/pp.95.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Childs K. L., Pratt L. H., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor: VI. The ma(3) Allele Results in Abnormal Phytochrome Physiology. Plant Physiol. 1991 Oct;97(2):714–719. doi: 10.1104/pp.97.2.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cordonnier M. M., Greppin H., Pratt L. H. Identification of a highly conserved domain on phytochrome from angiosperms to algae. Plant Physiol. 1986 Apr;80(4):982–987. doi: 10.1104/pp.80.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies P. J., Birnberg P. R., Maki S. L., Brenner M. L. Photoperiod modification of [C]gibberellin a(12) aldehyde metabolism in shoots of pea, line g2. Plant Physiol. 1986 Aug;81(4):991–996. doi: 10.1104/pp.81.4.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Pao C. I., Morgan P. W. Genetic Regulation of Development in Sorghum bicolar: I. Role of the Maturity Genes. Plant Physiol. 1986 Oct;82(2):575–580. doi: 10.1104/pp.82.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pao C. I., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor: II. Effect of the ma(3) Allele Mimicked by GA(3). Plant Physiol. 1986 Oct;82(2):581–584. doi: 10.1104/pp.82.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pratt L. H., Cordonnier M. M., Lagarias J. C. Mapping of antigenic domains on phytochrome from etiolated Avena sativa L. by immunoblot analysis of proteolytically derived peptides. Arch Biochem Biophys. 1988 Dec;267(2):723–735. doi: 10.1016/0003-9861(88)90081-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES