Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Jul;99(3):817–821. doi: 10.1104/pp.99.3.817

Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex 1

David M Speiser 1,2,3, Susan L Abrahamson 1,2,3, Gary Banuelos 1,2,3, David W Ow 1,2,3
PMCID: PMC1080550  PMID: 16669006

Abstract

Phytochelatins (PCs) are enzymically synthesized peptides produced in higher plants and some fungi upon exposure to heavy metals. We have examined PC production in the Se-tolerant wild mustard Brassica juncea and found that it produces two types of PC-Cd complexes with the same characteristics as those from fission yeast Schizosaccharomyces pombe, including a high molecular weight PC-Cd-sulfide form.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson S. L., Speiser D. M., Ow D. W. A gel electrophoresis assay for phytochelatins. Anal Biochem. 1992 Feb 1;200(2):239–243. doi: 10.1016/0003-2697(92)90459-k. [DOI] [PubMed] [Google Scholar]
  2. Dameron C. T., Smith B. R., Winge D. R. Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. J Biol Chem. 1989 Oct 15;264(29):17355–17360. [PubMed] [Google Scholar]
  3. Fett W. F., Dunn M. F. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. doi: 10.1104/pp.89.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grill E., Löffler S., Winnacker E. L., Zenk M. H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838–6842. doi: 10.1073/pnas.86.18.6838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grill E., Winnacker E. L., Zenk M. H. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A. 1987 Jan;84(2):439–443. doi: 10.1073/pnas.84.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grill E., Winnacker E. L., Zenk M. H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science. 1985 Nov 8;230(4726):674–676. doi: 10.1126/science.230.4726.674. [DOI] [PubMed] [Google Scholar]
  7. Hamer D. H. Metallothionein. Annu Rev Biochem. 1986;55:913–951. doi: 10.1146/annurev.bi.55.070186.004405. [DOI] [PubMed] [Google Scholar]
  8. Jackson P. J., Unkefer C. J., Doolen J. A., Watt K., Robinson N. J. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6619–6623. doi: 10.1073/pnas.84.19.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karin M. Metallothioneins: proteins in search of function. Cell. 1985 May;41(1):9–10. doi: 10.1016/0092-8674(85)90051-0. [DOI] [PubMed] [Google Scholar]
  10. Mehra R. K., Garey J. R., Butt T. R., Gray W. R., Winge D. R. Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins. J Biol Chem. 1989 Nov 25;264(33):19747–19753. [PubMed] [Google Scholar]
  11. Mehra R. K., Tarbet E. B., Gray W. R., Winge D. R. Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8815–8819. doi: 10.1073/pnas.85.23.8815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murasugi A., Wada C., Hayashi Y. Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe. J Biochem. 1981 Nov;90(5):1561–1564. doi: 10.1093/oxfordjournals.jbchem.a133627. [DOI] [PubMed] [Google Scholar]
  13. Murasugi A., Wada C., Hayashi Y. Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast. J Biochem. 1983 Feb;93(2):661–664. doi: 10.1093/oxfordjournals.jbchem.a134222. [DOI] [PubMed] [Google Scholar]
  14. Murasugi A., Wada C., Hayashi Y. Purification and unique properties in UV and CD spectra of Cd-binding peptide 1 from Schizosaccharomyces pombe. Biochem Biophys Res Commun. 1981 Dec 15;103(3):1021–1028. doi: 10.1016/0006-291x(81)90911-6. [DOI] [PubMed] [Google Scholar]
  15. Mutoh N., Hayashi Y. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun. 1988 Feb 29;151(1):32–39. doi: 10.1016/0006-291x(88)90555-4. [DOI] [PubMed] [Google Scholar]
  16. Rabinowitz J. C. Analysis of acid-labile sulfide and sulfhydryl groups. Methods Enzymol. 1978;53:275–277. doi: 10.1016/s0076-6879(78)53033-4. [DOI] [PubMed] [Google Scholar]
  17. Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
  18. Reese R. N., Mehra R. K., Tarbet E. B., Winge D. R. Studies on the gamma-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J Biol Chem. 1988 Mar 25;263(9):4186–4192. [PubMed] [Google Scholar]
  19. Reese R. N., White C. A., Winge D. R. Cadmium-Sulfide Crystallites in Cd-(gammaEC)(n)G Peptide Complexes from Tomato. Plant Physiol. 1992 Jan;98(1):225–229. doi: 10.1104/pp.98.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reese R. N., Winge D. R. Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem. 1988 Sep 15;263(26):12832–12835. [PubMed] [Google Scholar]
  21. Scheller H. V., Huang B., Hatch E., Goldsbrough P. B. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol. 1987 Dec;85(4):1031–1035. doi: 10.1104/pp.85.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steffens J. C., Hunt D. F., Williams B. G. Accumulation of non-protein metal-binding polypeptides (gamma-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. J Biol Chem. 1986 Oct 25;261(30):13879–13882. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES