Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Jul;99(3):843–847. doi: 10.1104/pp.99.3.843

Migration of the Fungal Protein Cryptogein within Tobacco Plants 1

Jean-Claude Devergne 1,2, Philippe Bonnet 1,2, Frank Panabières 1,2, Jean-Pierre Blein 1,2, Pierre Ricci 1,2
PMCID: PMC1080554  PMID: 16669010

Abstract

Cryptogein (CRY), a protein secreted by Phytophthora cryptogea, causes necrosis on tobacco (Nicotiana tabacum) plants at the site of application (the stem or the roots) and also on distant leaves. Autoradiography of plantlets after root absorption of radioiodinated CRY demonstrated a rapid migration of the label to the leaf lamina via the veins. Using an anti-CRY antiserum, a CRY-related antigen was detected in the stem and leaves of CRY-treated plants at a distance from the site of application. This antigen had the same molecular weight as CRY and was detected in the leaves as early as 1 hour after stem treatment, i.e. long before necrosis was detectable. The antigen was also detected in plants inoculated with P. cryptogea. The distant location of the necrosis induced by the fungus or by CRY can be ascribed to the migration of this protein, which is toxic to tobacco cells. It is proposed that CRY, which also elicits defense reactions in tobacco, might contribute to the hypersensitive response of tobacco to P. cryptogea.

Full text

PDF
843

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrameas S. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry. 1969 Jan;6(1):43–52. doi: 10.1016/0019-2791(69)90177-3. [DOI] [PubMed] [Google Scholar]
  2. Bailey B. A., Dean J. F., Anderson J. D. An Ethylene Biosynthesis-Inducing Endoxylanase Elicits Electrolyte Leakage and Necrosis in Nicotiana tabacum cv Xanthi Leaves. Plant Physiol. 1990 Dec;94(4):1849–1854. doi: 10.1104/pp.94.4.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blein J. P., Milat M. L., Ricci P. Responses of Cultured Tobacco Cells to Cryptogein, a Proteinaceous Elicitor from Phytophthora cryptogea: Possible Plasmalemma Involvement. Plant Physiol. 1991 Feb;95(2):486–491. doi: 10.1104/pp.95.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark M. F., Adams A. N. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol. 1977 Mar;34(3):475–483. doi: 10.1099/0022-1317-34-3-475. [DOI] [PubMed] [Google Scholar]
  5. Hardie G., van Regenmortel M. H. Isolation of specific antibody under conditions of low ionic strength. J Immunol Methods. 1977;15(4):305–314. doi: 10.1016/0022-1759(77)90092-8. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Malamy J., Carr J. P., Klessig D. F., Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. doi: 10.1126/science.250.4983.1002. [DOI] [PubMed] [Google Scholar]
  8. Pearce G., Strydom D., Johnson S., Ryan C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 1991 Aug 23;253(5022):895–897. doi: 10.1126/science.253.5022.895. [DOI] [PubMed] [Google Scholar]
  9. Ricci P., Bonnet P., Huet J. C., Sallantin M., Beauvais-Cante F., Bruneteau M., Billard V., Michel G., Pernollet J. C. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem. 1989 Aug 15;183(3):555–563. doi: 10.1111/j.1432-1033.1989.tb21084.x. [DOI] [PubMed] [Google Scholar]
  10. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vaitukaitis J. L. Production of antisera with small doses of immunogen: multiple intradermal injections. Methods Enzymol. 1981;73(Pt B):46–52. doi: 10.1016/0076-6879(81)73055-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES