Abstract
White leaves of the mutant line albostrians and green leaves of the wild-type cultivar Salome of barley (Hordeum vulgare L.) were screened for the presence of plastidic and cytosolic isoenzymes of sugar-phosphate metabolism. Isoenzyme separation was achieved by anion-exchange chromatography on Fractogel TSK DEAE-650(S). The mutant tissue had a markedly reduced level of plastidic 3-phosphoglycerate kinase, triosephosphate isomerase, and aldolase activity. In contrast, the activity of plastidic glucosephosphate isomerase, fructose 1,6-bisphosphatase, 6-phosphogluconate dehydrogenase, starch phosphorylase, and ADP-glucose pyrophosphorylase was in the same range as in wild-type leaf tissue. The activity of the corresponding cytosolic isoenzymes (including UDP-glucose pyrophosphorylase) showed essentially no differences in mutant and wild type. The same trend was observed in dark-grown mutant and wild-type leaves. Interestingly, the total activity levels of all isoenzymes were about the same when comparing dark-grown and light-grown mutant or wild-type plants. From these data, it is concluded that mutant leaves exhibit a selective decrease of a subgroup of plastidic isoenzymes associated with the Calvin cycle.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Feierabend J., Wildner G. Formation of the small subunit in the absence of the large subunit of ribulose 1,5-bisphosphate carboxylase in 70 S ribosome-deficient rye leaves. Arch Biochem Biophys. 1978 Mar;186(2):283–291. doi: 10.1016/0003-9861(78)90437-x. [DOI] [PubMed] [Google Scholar]
- Heldt H. W., Flügge U. I., Borchert S. Diversity of specificity and function of phosphate translocators in various plastids. Plant Physiol. 1991 Feb;95(2):341–343. doi: 10.1104/pp.95.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krüger I., Schnarrenberger C. Purification, subunit structure and immunological comparison of fructose-bisphosphate aldolases from spinach and corn leaves. Eur J Biochem. 1983 Oct 17;136(1):101–106. doi: 10.1111/j.1432-1033.1983.tb07711.x. [DOI] [PubMed] [Google Scholar]
- Köpke-Secundo E., Molnar I., Schnarrenberger C. Isolation and characterization of the cytosolic and chloroplastic 3-phosphoglycerate kinase from spinach leaves. Plant Physiol. 1990 May;93(1):40–47. doi: 10.1104/pp.93.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latzko E., Zimmermann G., Feller U. Evidence for a hexosediphosphatase from the cytoplasm of spinach leaves. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):321–326. doi: 10.1515/bchm2.1974.355.1.321. [DOI] [PubMed] [Google Scholar]
- Okita T. W., Greenberg E., Kuhn D. N., Preiss J. Subcellular localization of the starch degradative and biosynthetic enzymes of spinach leaves. Plant Physiol. 1979 Aug;64(2):187–192. doi: 10.1104/pp.64.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnarrenberger C., Oeser A., Tolbert N. E. Two isoenzymes each of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in spinach leaves. Arch Biochem Biophys. 1973 Jan;154(1):438–448. doi: 10.1016/0003-9861(73)90077-5. [DOI] [PubMed] [Google Scholar]
- Schnarrenberger C., Oeser A. Two isoenzymes of glucosephosphate isomerase from spinach leaves and their intracellular compartmentation. Eur J Biochem. 1974 Jun 1;45(1):77–82. doi: 10.1111/j.1432-1033.1974.tb03531.x. [DOI] [PubMed] [Google Scholar]
- Schnarrenberger C., Tetour M., Herbert M. Development and intracellular distribution of enzymes of the oxidative pentose phosphate cycle in radish cotyledons. Plant Physiol. 1975 Dec;56(6):836–840. doi: 10.1104/pp.56.6.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowokinos J. R. Pyrophosphorylases in Solanum tuberosum: I. Changes in ADP-Glucose and UDP-Glucose Pyrophosphorylase Activities Associated with Starch Biosynthesis during Tuberization, Maturation, and Storage of Potatoes. Plant Physiol. 1976 Jan;57(1):63–68. doi: 10.1104/pp.57.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]