Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Jul;99(3):1179–1183. doi: 10.1104/pp.99.3.1179

Sequencing and Characterization of the Soybean Leaf Metalloproteinase 1

Structural and Functional Similarity to the Matrix Metalloproteinase Family

Gerard McGeehan 1,2,3, William Burkhart 1,2,3, Robert Anderegg 1,2,3, J David Becherer 1,2,3, Jeffery W Gillikin 1,2,3, John S Graham 1,2,3
PMCID: PMC1080600  PMID: 16668986

Abstract

A novel zinc endoproteinase has been sequenced and characterized from soybean leaves (Glycine max var Williams 82) and has been designated as Protein Identification Resource accession No. A41820 SMEP1 (soybean metalloendoproteinase 1). Comparison of the primary amino acid sequence with other zinc proteinases revealed the enzyme to be a new member of the matrix metalloproteinase (MMP) family of enzymes. SMEP was found to have MMP cleavage specificity toward peptide substrates and the enzyme is specifically inhibited by naturally occurring tissue inhibitors of MMPs through a high-affinity interaction (inhibitor concentration resulting in an approximate 50% decrease in enzyme activity = 23 × 10−9 molar). Together, these results suggest that the origin of the MMP family of enzymes and their cognate inhibitors predates the divergence of plants and animals.

Full text

PDF
1179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature. 1990 Dec 20;348(6303):699–704. doi: 10.1038/348699a0. [DOI] [PubMed] [Google Scholar]
  2. Clark I. M., Cawston T. E. Fragments of human fibroblast collagenase. Purification and characterization. Biochem J. 1989 Oct 1;263(1):201–206. doi: 10.1042/bj2630201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C. S., Bauer E. A., Goldberg G. I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 1988 May 15;263(14):6579–6587. [PubMed] [Google Scholar]
  4. Docherty A. J., Murphy G. The tissue metalloproteinase family and the inhibitor TIMP: a study using cDNAs and recombinant proteins. Ann Rheum Dis. 1990 Jun;49 (Suppl 1):469–479. [PubMed] [Google Scholar]
  5. Fini M. E., Plucinska I. M., Mayer A. S., Gross R. H., Brinckerhoff C. E. A gene for rabbit synovial cell collagenase: member of a family of metalloproteinases that degrade the connective tissue matrix. Biochemistry. 1987 Sep 22;26(19):6156–6165. doi: 10.1021/bi00393a032. [DOI] [PubMed] [Google Scholar]
  6. Gillikin J. W., Burkhart W., Graham J. S. Complete Amino Acid Sequence of a Polypeptide from Zea mays Similar to the Pathogenesis-Related-1 Family. Plant Physiol. 1991 Aug;96(4):1372–1375. doi: 10.1104/pp.96.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graham J. S., Xiong J., Gillikin J. W. Purification and Developmental Analysis of a Metalloendoproteinase from the Leaves of Glycine max. Plant Physiol. 1991 Oct;97(2):786–792. doi: 10.1104/pp.97.2.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lepage T., Gache C. Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo. EMBO J. 1990 Sep;9(9):3003–3012. doi: 10.1002/j.1460-2075.1990.tb07493.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lowry C. L., McGeehan G., LeVine H., 3rd Metal ion stabilization of the conformation of a recombinant 19-kDa catalytic fragment of human fibroblast collagenase. Proteins. 1992 Jan;12(1):42–48. doi: 10.1002/prot.340120106. [DOI] [PubMed] [Google Scholar]
  10. Muller D., Quantin B., Gesnel M. C., Millon-Collard R., Abecassis J., Breathnach R. The collagenase gene family in humans consists of at least four members. Biochem J. 1988 Jul 1;253(1):187–192. doi: 10.1042/bj2530187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Murphy G. J., Murphy G., Reynolds J. J. The origin of matrix metalloproteinases and their familial relationships. FEBS Lett. 1991 Sep 2;289(1):4–7. doi: 10.1016/0014-5793(91)80895-a. [DOI] [PubMed] [Google Scholar]
  12. Parker L. L., Hall B. G. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Genetics. 1990 Mar;124(3):455–471. doi: 10.1093/genetics/124.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ragster L. V., Chrispeels M. J. Azocoll-digesting Proteinases in Soybean Leaves: Characteristics and Changes during Leaf Maturation and Senescence. Plant Physiol. 1979 Nov;64(5):857–862. doi: 10.1104/pp.64.5.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rawlings D. E., Jones W. A., O'Neill E. G., Woods D. R. Nucleotide sequence of the glutamine synthetase gene and its controlling region from the acidophilic autotroph Thiobacillus ferrooxidans. Gene. 1987;53(2-3):211–217. doi: 10.1016/0378-1119(87)90009-6. [DOI] [PubMed] [Google Scholar]
  15. Stack M. S., Gray R. D. Comparison of vertebrate collagenase and gelatinase using a new fluorogenic substrate peptide. J Biol Chem. 1989 Mar 15;264(8):4277–4281. [PubMed] [Google Scholar]
  16. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  17. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weaver L. H., Kester W. R., Matthews B. W. A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of extended substances. J Mol Biol. 1977 Jul;114(1):119–132. doi: 10.1016/0022-2836(77)90286-8. [DOI] [PubMed] [Google Scholar]
  19. Weingarten H., Martin R., Feder J. Synthetic substrates of vertebrate collagenase. Biochemistry. 1985 Nov 5;24(23):6730–6734. doi: 10.1021/bi00344a064. [DOI] [PubMed] [Google Scholar]
  20. Whitham S. E., Murphy G., Angel P., Rahmsdorf H. J., Smith B. J., Lyons A., Harris T. J., Reynolds J. J., Herrlich P., Docherty A. J. Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem J. 1986 Dec 15;240(3):913–916. doi: 10.1042/bj2400913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]
  22. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES