Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Aug;99(4):1487–1492. doi: 10.1104/pp.99.4.1487

Substrate Specificity of Pyrophosphate:Fructose 6-Phosphate 1-Phosphotransferase from Potato Tuber

Pierre Montavon 1,1, Nicholas J Kruger 1
PMCID: PMC1080652  PMID: 16669063

Abstract

The aim of this work was to establish the precise ionic form of the reactants used by pyrophosphate:fructose-6-phosphate phosphotransferase. The enzyme was purified to near-homogeneity from potato (Solanum tuberosum L.) tubers. Changes in enzyme activity when the pH of the assay and the concentration of fructose 6-phosphate, pyrophosphate, and magnesium are varied independently indicate that fructose 6-phosphate2− and MgP2O72− are the reacting species in the glycolytic direction. Analogous experiments with fructose 1,6-bisphosphate, inorganic phosphate, and magnesium demonstrate that the enzyme uses fructose 1,6-bisphosphate4−, HPO42−, and Mg2+ in the gluconeogenic direction. The ionic species used in the glycolytic direction are comparable with those required by bacterial ATP-dependent phosphofructokinase. This is consistent with the proposal that the active site of pyrophosphate:fructose-6-phosphate phosphotransferase in plants is equivalent to that of the bacterial phosphofructokinase (SM Carlisle et al. [1990] J Biol Chem 265: 18366-18371).

Full text

PDF
1487

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apps D. K. Complex formation between magnesium ions and pyridine nucleotide coenzymes. Biochim Biophys Acta. 1973 Sep 14;320(2):379–387. doi: 10.1016/0304-4165(73)90319-x. [DOI] [PubMed] [Google Scholar]
  2. Berger S. A., Evans P. R. Active-site mutants altering the cooperativity of E. coli phosphofructokinase. Nature. 1990 Feb 8;343(6258):575–576. doi: 10.1038/343575a0. [DOI] [PubMed] [Google Scholar]
  3. Bertagnolli B. L., Cook P. F. Kinetic mechanism of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii. Biochemistry. 1984 Aug 28;23(18):4101–4108. doi: 10.1021/bi00313a014. [DOI] [PubMed] [Google Scholar]
  4. Bertagnolli B. L., Younathan E. S., Voll R. J., Pittman C. E., Cook P. F. Carbohydrate substrate specificity of bacterial and plant pyrophosphate-dependent phosphofructokinases. Biochemistry. 1986 Aug 12;25(16):4674–4681. doi: 10.1021/bi00364a033. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Carlisle S. M., Blakeley S. D., Hemmingsen S. M., Trevanion S. J., Hiyoshi T., Kruger N. J., Dennis D. T. Pyrophosphate-dependent phosphofructokinase. Conservation of protein sequence between the alpha- and beta-subunits and with the ATP-dependent phosphofructokinase. J Biol Chem. 1990 Oct 25;265(30):18366–18371. [PubMed] [Google Scholar]
  7. Cho Y. K., Cook P. F. Inactivation of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii by pyridoxal 5'-phosphate. Determination of the pH dependence of enzyme-reactant dissociation constants from protection against inactivation. J Biol Chem. 1988 Apr 15;263(11):5135–5140. [PubMed] [Google Scholar]
  8. Hellinga H. W., Evans P. R. Mutations in the active site of Escherichia coli phosphofructokinase. Nature. 1987 Jun 4;327(6121):437–439. doi: 10.1038/327437a0. [DOI] [PubMed] [Google Scholar]
  9. Kombrink E., Kruger N. J., Beevers H. Kinetic properties of pyrophosphate:fructose-6-phosphate phosphotransferase from germinating castor bean endosperm. Plant Physiol. 1984 Feb;74(2):395–401. doi: 10.1104/pp.74.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kruger N. J., Dennis D. T. Molecular properties of pyrophosphate:fructose-6-phosphate phosphotransferase from potato tuber. Arch Biochem Biophys. 1987 Jul;256(1):273–279. doi: 10.1016/0003-9861(87)90446-2. [DOI] [PubMed] [Google Scholar]
  11. Kruger N. J., Hammond J. B. Molecular Comparison of Pyrophosphate- and ATP-Dependent Fructose 6-Phosphate 1-Phosphotransferases from Potato Tuber. Plant Physiol. 1988 Mar;86(3):645–648. doi: 10.1104/pp.86.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ladror U. S., Gollapudi L., Tripathi R. L., Latshaw S. P., Kemp R. G. Cloning, sequencing, and expression of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii. J Biol Chem. 1991 Sep 5;266(25):16550–16555. [PubMed] [Google Scholar]
  13. Poorman R. A., Randolph A., Kemp R. G., Heinrikson R. L. Evolution of phosphofructokinase--gene duplication and creation of new effector sites. 1984 May 31-Jun 6Nature. 309(5967):467–469. doi: 10.1038/309467a0. [DOI] [PubMed] [Google Scholar]
  14. Shirakihara Y., Evans P. R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol. 1988 Dec 20;204(4):973–994. doi: 10.1016/0022-2836(88)90056-3. [DOI] [PubMed] [Google Scholar]
  15. Uyeda K. Phosphofructokinase. Adv Enzymol Relat Areas Mol Biol. 1979;48:193–244. doi: 10.1002/9780470122938.ch4. [DOI] [PubMed] [Google Scholar]
  16. Yan T. F., Tao M. Multiple forms of pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase from wheat seedlings. Regulation by fructose 2,6-bisphosphate. J Biol Chem. 1984 Apr 25;259(8):5087–5092. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES