Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 May;96(1):305–309. doi: 10.1104/pp.96.1.305

Physiological Responses of Soybean Plants Grown in a Nitrogen-Free or Energy Limited Environment 1

Yu-xian Zhu 1, Karel R Schubert 1, Daniel H Kohl 1
PMCID: PMC1080751  PMID: 16668170

Abstract

Soybean (Glycine max [L.] Merr.) seedlings grown in the absence of combined N and in an Ar:O2 (79:21, volume/volume) atmosphere had greater seedling and nodule mass, threefold higher acetylene reducing activity per gram fresh weight nodules, no observable increase in nitrogenase Fe-protein, and a higher energy charge than did control plants. A sharp fall in acetylene reducing activity and energy charge accompanying stem-girdling was prevented by exogenous succinate, a result consistent with a path from the roots to the nodule other than via the phloem.

Full text

PDF
305

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins C. A., Pate J. S., Shelp B. J. Effects of short-term n(2) deficiency on N metabolism in legume nodules. Plant Physiol. 1984 Nov;76(3):705–710. doi: 10.1104/pp.76.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heckmann M. O., Drevon J. J., Saglio P., Salsac L. Effect of Oxygen and Malate on NO(3) Inhibition of Nitrogenase in Soybean Nodules. Plant Physiol. 1989 May;90(1):224–229. doi: 10.1104/pp.90.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kohl D. H., Schubert K. R., Carter M. B., Hagedorn C. H., Shearer G. Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2036–2040. doi: 10.1073/pnas.85.7.2036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kranz R. G., Pace V. M., Caldicott I. M. Inactivation, sequence, and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capsulatus. J Bacteriol. 1990 Jan;172(1):53–62. doi: 10.1128/jb.172.1.53-62.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Layzell D. B., Hunt S., Palmer G. R. Mechanism of Nitrogenase Inhibition in Soybean Nodules : Pulse-Modulated Spectroscopy Indicates that Nitrogenase Activity Is Limited by O(2). Plant Physiol. 1990 Apr;92(4):1101–1107. doi: 10.1104/pp.92.4.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lewis T. A., Gonzalez R., Botsford J. L. Rhizobium meliloti glutamate synthase: cloning and initial characterization of the glt locus. J Bacteriol. 1990 May;172(5):2413–2420. doi: 10.1128/jb.172.5.2413-2420.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pate J. S., Atkins C. A., Layzell D. B., Shelp B. J. Effects of n(2) deficiency on transport and partitioning of C and N in a nodulated legume. Plant Physiol. 1984 Sep;76(1):59–64. doi: 10.1104/pp.76.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shearer G., Bryan B. A., Kohl D. H. Increase of natural N enrichment of soybean nodules with mean nodule mass. Plant Physiol. 1984 Nov;76(3):743–746. doi: 10.1104/pp.76.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Weisser J. I. A successful method for bonding stainless steel brackets and auxiliaries. J Clin Orthod. 1973 Oct;7(10):637–645. [PubMed] [Google Scholar]
  11. Wherland S., Burgess B. K., Stiefel E. I., Newton W. E. Nitrogenase reactivity: effects of component ratio on electron flow and distribution during nitrogen fixation. Biochemistry. 1981 Sep 1;20(18):5132–5140. doi: 10.1021/bi00521a006. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES