Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Jun;96(2):565–570. doi: 10.1104/pp.96.2.565

Solubilization and Reconstitution of Ca2+ Pump from Corn Leaf Plasma Membrane 1

Minobu Kasai 1,2, Shoshi Muto 1
PMCID: PMC1080807  PMID: 16668222

Abstract

The Ca2+ transport system of corn (Zea mays) leaf plasma membrane is composed of Ca2+ pump and Ca2+/H+ antiporter driven by H+ gradient imposed by a H+ pump (M Kasai, S Muto [1990] J Membr Biol 114: 133-142). It is necessary for characterization of these Ca2+ transporters to establish the procedure for their solubilization, isolation, and reconstitution into liposomes. We attempted to solubilize and reconstitute the Ca2+ pump in the present study. A nonionic detergent octaethyleneglycol monododecyl ether (C12E8) was the most effective detergent for a series of extraction and functional reconstitution of the Ca2+ pump among seven detergents examined. This was judged from activities of ATP-dependent 45Ca2+ uptake into liposomes reconstituted with the respective detergent-extract of the plasma membrane by the detergent dilution method. C12E8-extract of the plasma membrane was subjected to high performance liquid chromatography using a DEAE anion exchange column. Ca2+-ATPase was separated from VO43−-sensitive Mg2+-ATPase. These ATPases were separately reconstituted into liposomes, and their ATP-dependent Ca2+ uptake was measured. The liposomes reconstituted with the Ca2+-ATPase, but not with the VO43−-sensitive Mg2+-ATPase, showed ATP-dependent Ca2+ uptake. Nigericin-induced pH gradient (acid inside) caused only a little Ca2+ uptake into liposomes reconstituted with the Ca2+-ATPase, suggesting that the Ca2+/H+ antiporter was not present in the preparation. These results indicate that the Ca2+-ATPase actually functions as Ca2+ pump in the corn leaf plasma membrane.

Full text

PDF
565

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Buckhout T. J. Characterization of Ca Transport in Purified Endoplasmic Reticulum Membrane Vesicles from Lepidium sativum L. Roots. Plant Physiol. 1984 Dec;76(4):962–967. doi: 10.1104/pp.76.4.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carafoli E., Zurini M. The Ca2+-pumping ATPase of plasma membranes. Purification, reconstitution and properties. Biochim Biophys Acta. 1982 Dec 31;683(3-4):279–301. doi: 10.1016/0304-4173(82)90004-0. [DOI] [PubMed] [Google Scholar]
  4. Collinge M., Trewavas A. J. The location of calmodulin in the pea plasma membrane. J Biol Chem. 1989 May 25;264(15):8865–8872. [PubMed] [Google Scholar]
  5. Iggo R. D., Lane D. P. Nuclear protein p68 is an RNA-dependent ATPase. EMBO J. 1989 Jun;8(6):1827–1831. doi: 10.1002/j.1460-2075.1989.tb03577.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaplan R. S., Pedersen P. L. Determination of microgram quantities of protein in the presence of milligram levels of lipid with amido black 10B. Anal Biochem. 1985 Oct;150(1):97–104. doi: 10.1016/0003-2697(85)90445-2. [DOI] [PubMed] [Google Scholar]
  7. Kasai M., Muto S. Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves. J Membr Biol. 1990 Mar;114(2):133–142. doi: 10.1007/BF01869094. [DOI] [PubMed] [Google Scholar]
  8. Keresztes T., Jona I., Pikula S., Vegh M., Mullner N., Papp S., Martonosi A. Effect of calcium on the interactions between Ca2+-ATPase molecules in sarcoplasmic reticulum. Biochim Biophys Acta. 1989 Sep 18;984(3):326–338. doi: 10.1016/0005-2736(89)90300-3. [DOI] [PubMed] [Google Scholar]
  9. Lund S., Orlowski S., de Foresta B., Champeil P., le Maire M., Møller J. V. Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1989 Mar 25;264(9):4907–4915. [PubMed] [Google Scholar]
  10. Moore R. B., Manery J. F., Still J., Mankad V. N. The inhibitory effects of polyoxyethylene detergents on human erythrocyte acetylcholinesterase and Ca2+ + Mg2+ ATPase. Biochem Cell Biol. 1989 Feb-Mar;67(2-3):137–146. doi: 10.1139/o89-021. [DOI] [PubMed] [Google Scholar]
  11. Møller J. V., Lind K. E., Andersen J. P. Enzyme kinetics and substrate stabilization of detergent-solubilized and membraneous (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum. Effect of protein-protein interactions. J Biol Chem. 1980 Mar 10;255(5):1912–1920. [PubMed] [Google Scholar]
  12. Niggli V., Adunyah E. S., Penniston J. T., Carafoli E. Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem. 1981 Jan 10;256(1):395–401. [PubMed] [Google Scholar]
  13. Niggli V., Carafoli E. Interaction of the purified Ca2+, Mg2+-ATPase from human erythrocytes with phospholipids and calmodulin. Acta Biol Med Ger. 1981;40(4-5):437–442. [PubMed] [Google Scholar]
  14. Poovaiah B. W., Reddy A. S. Calcium messenger system in plants. CRC Crit Rev Plant Sci. 1987;6(1):47–103. doi: 10.1080/07352688709382247. [DOI] [PubMed] [Google Scholar]
  15. Racker E., Violand B., O'Neal S., Alfonzo M., Telford J. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch Biochem Biophys. 1979 Dec;198(2):470–477. doi: 10.1016/0003-9861(79)90521-6. [DOI] [PubMed] [Google Scholar]
  16. Rasi-Caldogno F., Pugliarello M. C., Olivari C., De Michelis M. I. Identification and Characterization of the Ca-ATPase which Drives Active Transport of Ca at the Plasma Membrane of Radish Seedlings. Plant Physiol. 1989 Aug;90(4):1429–1434. doi: 10.1104/pp.90.4.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Serrano R. Purification of the proton pumping ATPase from plant plasma membranes. Biochem Biophys Res Commun. 1984 Jun 15;121(2):735–740. doi: 10.1016/0006-291x(84)90243-2. [DOI] [PubMed] [Google Scholar]
  18. Soumarmon A., Robert J. C., Lewin M. J. Depolymerization of solubilized gastric (H+ + K+)-ATPase by n-octylglucoside or cholate. Biochim Biophys Acta. 1986 Aug 7;860(1):109–117. doi: 10.1016/0005-2736(86)90504-3. [DOI] [PubMed] [Google Scholar]
  19. Stosic V., Penel C., Marme D., Greppin H. Distribution of calmodulin-stimulated ca transport into membrane vesicles from green spinach leaves. Plant Physiol. 1983 Aug;72(4):1136–1138. doi: 10.1104/pp.72.4.1136. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES