Abstract
Two cDNA clones, PKpα and PKpβ, for the leucoplast isozyme of pyruvate kinase have been isolated and characterized. A Southern blot of castor (Ricinus communis) DNA probed with PKpα indicates the presence of a single gene for PKp. Most (1610 base pairs) of the sequence of both cDNAs is identical. These 1610 base pairs begin with an ATG translation initiation codon, and have 248 base pairs of 3′-untranslated and 1362 base pairs of coding sequence. The sequences of the two clones 5′- to the identical regions are different but both encode peptides with a high percentage of hydrophobic amino acids. The derived sequence of PKpα encodes eight amino acid residues which have been identified as the amino-terminus of one subunit of PKp from castor seed leucoplasts when the enzyme is purified in the absence of cysteine endopeptidase inhibitors. The sequence upstream of these amino acids is possibly the transit peptide for this protein. When PKp is extracted under conditions that eliminate its proteolytic degradation, its α-subunit has a relative molecular weight equal to the full-length coding sequence of PKpα. The data indicate that the transit peptide for the subunit of leucoplast pyruvate kinase encoded by PKpα is not cleaved until the protein is released from the plastid. The derived amino acid sequences of PKpα and PKpβ are most closely related to Escherichia coli pyruvate kinase. Although the residues involved in substrate binding are conserved in leucoplast pyruvate kinase, there is no phosphorylation site and only 5 of 15 amino acids in the E. coli fructose-1,6-bisphosphate binding site are conserved.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blakeley S. D., Plaxton W. C., Dennis D. T. Cloning and characterization of a cDNA for the cytosolic isozyme of plant pyruvate kinase: the relationship between the plant and non-plant enzyme. Plant Mol Biol. 1990 Oct;15(4):665–669. doi: 10.1007/BF00017842. [DOI] [PubMed] [Google Scholar]
- Boyle S. A., Hemmingsen S. M., Dennis D. T. Uptake and processing of the precursor to the small subunit of ribulose 1,5-bisphosphate carboxylase by leucoplasts from the endosperm of developing castor oil seeds. Plant Physiol. 1986 Jul;81(3):817–822. doi: 10.1104/pp.81.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brisson N., Giroux H., Zollinger M., Camirand A., Simard C. Maturation and subcellular compartmentation of potato starch phosphorylase. Plant Cell. 1989 May;1(5):559–566. doi: 10.1105/tpc.1.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke R. L., Tekamp-Olson P., Najarian R. The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J Biol Chem. 1983 Feb 25;258(4):2193–2201. [PubMed] [Google Scholar]
- Davis R. W., Thomas M., Cameron J., St John T. P., Scherer S., Padgett R. A. Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 1980;65(1):404–411. doi: 10.1016/s0076-6879(80)65051-4. [DOI] [PubMed] [Google Scholar]
- Grimm B., Ish-Shalom D., Even D., Glaczinski H., Ottersbach P., Ohad I., Kloppstech K. The nuclear-coded chloroplast 22-kDa heat-shock protein of Chlamydomonas. Evidence for translocation into the organelle without a processing step. Eur J Biochem. 1989 Jul 1;182(3):539–546. doi: 10.1111/j.1432-1033.1989.tb14861.x. [DOI] [PubMed] [Google Scholar]
- Imarai M., Hinrichsen P., Bazaes S., Wilkens M., Eyzaguirre J. Yeast pyruvate kinase: essential lysine residues in the active site. Int J Biochem. 1988;20(9):1001–1008. doi: 10.1016/0020-711x(88)90188-7. [DOI] [PubMed] [Google Scholar]
- Johnson S. C., Bailey T., Becker R. R., Cardenas J. M. Isolation and sequence determination of a peptide located in or near the active site of bovine muscle pyruvate kinase. Biochem Biophys Res Commun. 1979 Sep 27;90(2):525–530. doi: 10.1016/0006-291x(79)91267-1. [DOI] [PubMed] [Google Scholar]
- Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin M., Turpin D. H., Plaxton W. C. Pyruvate kinase isozymes from the green alga, Selenastrum minutum. I. Purification and physical and immunological characterization. Arch Biochem Biophys. 1989 Feb 15;269(1):219–227. doi: 10.1016/0003-9861(89)90103-3. [DOI] [PubMed] [Google Scholar]
- Lin M., Turpin D. H., Plaxton W. C. Pyruvate kinase isozymes from the green alga, Selenastrum minutum. II. Kinetic and regulatory properties. Arch Biochem Biophys. 1989 Feb 15;269(1):228–238. doi: 10.1016/0003-9861(89)90104-5. [DOI] [PubMed] [Google Scholar]
- Lone Y. C., Simon M. P., Kahn A., Marie J. Complete nucleotide and deduced amino acid sequences of rat L-type pyruvate kinase. FEBS Lett. 1986 Jan 20;195(1-2):97–100. doi: 10.1016/0014-5793(86)80138-7. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Mishkind M. L., Wessler S. R., Schmidt G. W. Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5-bisphosphate carboxylase small subunit of Chlamydomonas. J Cell Biol. 1985 Jan;100(1):226–234. doi: 10.1083/jcb.100.1.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muirhead H., Clayden D. A., Barford D., Lorimer C. G., Fothergill-Gilmore L. A., Schiltz E., Schmitt W. The structure of cat muscle pyruvate kinase. EMBO J. 1986 Mar;5(3):475–481. doi: 10.1002/j.1460-2075.1986.tb04236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muirhead H., Clayden D. A., Cuffe S. P., Davies C. Crystallographic studies on the structure and catalytic activity of pyruvate kinase from skeletal muscle. Biochem Soc Trans. 1987 Oct;15(5):996–999. doi: 10.1042/bst0150996. [DOI] [PubMed] [Google Scholar]
- Noguchi T., Inoue H., Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986 Oct 15;261(29):13807–13812. [PubMed] [Google Scholar]
- Noguchi T., Yamada K., Inoue H., Matsuda T., Tanaka T. The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem. 1987 Oct 15;262(29):14366–14371. [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plaxton W. C., Dennis D. T., Knowles V. L. Purification of leucoplast pyruvate kinase from developing castor bean endosperm. Plant Physiol. 1990 Dec;94(4):1528–1534. doi: 10.1104/pp.94.4.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plaxton W. C. Molecular and immunological characterization of plastid and cytosolic pyruvate kinase isozymes from castor-oil-plant endosperm and leaf. Eur J Biochem. 1989 May 1;181(2):443–451. doi: 10.1111/j.1432-1033.1989.tb14745.x. [DOI] [PubMed] [Google Scholar]
- Plaxton W. C. Purification of pyruvate kinase from germinating castor bean endosperm. Plant Physiol. 1988 Apr;86(4):1064–1069. doi: 10.1104/pp.86.4.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt G. W., Mishkind M. L. The transport of proteins into chloroplasts. Annu Rev Biochem. 1986;55:879–912. doi: 10.1146/annurev.bi.55.070186.004311. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Speranza M. L., Valentini G., Iadarola P., Stoppini M., Malcovati M., Ferri G. Primary structure of three peptides at the catalytic and allosteric sites of the fructose-1,6-bisphosphate-activated pyruvate kinase from Escherichia coli. Biol Chem Hoppe Seyler. 1989 Mar;370(3):211–216. doi: 10.1515/bchm3.1989.370.1.211. [DOI] [PubMed] [Google Scholar]