Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Sep;97(1):306–312. doi: 10.1104/pp.97.1.306

Phytochelatin Accumulation and Cadmium Tolerance in Selected Tomato Cell Lines 1

Subhash C Gupta 1,2, Peter B Goldsbrough 1
PMCID: PMC1080998  PMID: 16668386

Abstract

Four cell lines of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, were selected for their ability to grow in the presence of up to 6 millimolar CdCl2. The intracellular Cd concentration in these cells was at least 2.3 times higher than in the medium. Growth in media containing higher concentrations of Cd was accompanied by increased production of Cd-binding phytochelatins and a trend toward accumulation of higher molecular weight phytochelatins. At least 90% of the Cd in the most tolerant cells was associated with Cd-phytochelatin complexes. Cell lines maintained an increased tolerance of Cd in the absence of continuous selection pressure.

Full text

PDF
306

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Delhaize E., Jackson P. J., Lujan L. D., Robinson N. J. Poly(gamma-glutamylcysteinyl)glycine Synthesis in Datura innoxia and Binding with Cadmium : Role in Cadmium Tolerance. Plant Physiol. 1989 Feb;89(2):700–706. doi: 10.1104/pp.89.2.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  3. Grill E., Löffler S., Winnacker E. L., Zenk M. H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838–6842. doi: 10.1073/pnas.86.18.6838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grill E., Winnacker E. L., Zenk M. H. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A. 1987 Jan;84(2):439–443. doi: 10.1073/pnas.84.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jackson P. J., Roth E. J., McClure P. R., Naranjo C. M. Selection, Isolation, and Characterization of Cadmium-Resistant Datura innoxia Suspension Cultures. Plant Physiol. 1984 Aug;75(4):914–918. doi: 10.1104/pp.75.4.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jackson P. J., Unkefer C. J., Doolen J. A., Watt K., Robinson N. J. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6619–6623. doi: 10.1073/pnas.84.19.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mehra R. K., Tarbet E. B., Gray W. R., Winge D. R. Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8815–8819. doi: 10.1073/pnas.85.23.8815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mehra R. K., Winge D. R. Cu(I) binding to the Schizosaccharomyces pombe gamma-glutamyl peptides varying in chain lengths. Arch Biochem Biophys. 1988 Sep;265(2):381–389. doi: 10.1016/0003-9861(88)90141-5. [DOI] [PubMed] [Google Scholar]
  9. Mendum M. L., Gupta S. C., Goldsbrough P. B. Effect of glutathione on phytochelatin synthesis in tomato cells. Plant Physiol. 1990 Jun;93(2):484–488. doi: 10.1104/pp.93.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mutoh N., Hayashi Y. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun. 1988 Feb 29;151(1):32–39. doi: 10.1016/0006-291x(88)90555-4. [DOI] [PubMed] [Google Scholar]
  11. Reese R. N., Wagner G. J. Effects of buthionine sulfoximine on cd-binding Peptide levels in suspension-cultured tobacco cells treated with cd, zn, or cu. Plant Physiol. 1987 Jul;84(3):574–577. doi: 10.1104/pp.84.3.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reese R. N., Winge D. R. Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem. 1988 Sep 15;263(26):12832–12835. [PubMed] [Google Scholar]
  13. Rhodes D., Hogan A. L., Deal L., Jamieson G. C., Haworth P. Amino Acid Metabolism of Lemna minor L. : II. Responses to Chlorsulfuron. Plant Physiol. 1987 Jul;84(3):775–780. doi: 10.1104/pp.84.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scheller H. V., Huang B., Hatch E., Goldsbrough P. B. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol. 1987 Dec;85(4):1031–1035. doi: 10.1104/pp.85.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Steffens J. C., Hunt D. F., Williams B. G. Accumulation of non-protein metal-binding polypeptides (gamma-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. J Biol Chem. 1986 Oct 25;261(30):13879–13882. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES