Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Nov;97(3):851–855. doi: 10.1104/pp.97.3.851

Physiological and Molecular Aspects of the Inorganic Carbon-Concentrating Mechanism in Cyanobacteria 1

Aaron Kaplan 1, Rakefet Schwarz 1, Judy Lieman-Hurwitz 1, Leonora Reinhold 1
PMCID: PMC1081095  PMID: 16668522

Abstract

This paper reviews progress made in elucidating the inorganic carbon concentrating mechanism in cyanobacteria at the physiological and molecular levels. Emphasis is placed on the mechanism of inorganic carbon transport, physiological and genetical analysis of high-CO2-requiring mutants, the polypeptides induced during adaptation to low CO2, the functional significance of carboxysomes, and the role of carbonic anhydrase. We also make occasional reference to the green algal inorganic carbon-concentrating mechanism.

Full text

PDF
851

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badger M. R., Price G. D. Carbon Oxysulfide Is an Inhibitor of Both CO(2) and HCO(3) Uptake in the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 1990 Sep;94(1):35–39. doi: 10.1104/pp.94.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bédu S., Peltier G., Sarrey F., Joset F. Properties of a Mutant from Synechocystis PCC6803 Resistant to Acetazolamide, an Inhibitor of Carbonic Anhydrase. Plant Physiol. 1990 Aug;93(4):1312–1315. doi: 10.1104/pp.93.4.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coleman J. R., Berry J. A., Togasaki R. K., Grossman A. R. Identification of Extracellular Carbonic Anhydrase of Chlamydomonas reinhardtii. Plant Physiol. 1984 Oct;76(2):472–477. doi: 10.1104/pp.76.2.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Friedberg D., Kaplan A., Ariel R., Kessel M., Seijffers J. The 5'-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bacteriol. 1989 Nov;171(11):6069–6076. doi: 10.1128/jb.171.11.6069-6076.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukuzawa H., Fujiwara S., Yamamoto Y., Dionisio-Sese M. L., Miyachi S. cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4383–4387. doi: 10.1073/pnas.87.11.4383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geraghty A. M., Anderson J. C., Spalding M. H. A 36 Kilodalton Limiting-CO(2) Induced Polypeptide of Chlamydomonas Is Distinct from the 37 Kilodalton Periplasmic Carbonic Anhydrase. Plant Physiol. 1990 May;93(1):116–121. doi: 10.1104/pp.93.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Green L. S., Laudenbach D. E., Grossman A. R. A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1949–1953. doi: 10.1073/pnas.86.6.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaplan A., Scherer S., Lerner M. Nature of the light-induced h efflux and na uptake in cyanobacteria. Plant Physiol. 1989 Apr;89(4):1220–1225. doi: 10.1104/pp.89.4.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moroney J. V., Husic H. D., Tolbert N. E., Kitayama M., Manuel L. J., Togasaki R. K. Isolation and Characterization of a Mutant of Chlamydomonas reinhardtii Deficient in the CO(2) Concentrating Mechanism. Plant Physiol. 1989 Mar;89(3):897–903. doi: 10.1104/pp.89.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moroney J. V., Togasaki R. K., Husic H. D., Tolbert N. E. Evidence That an Internal Carbonic Anhydrase Is Present in 5% CO(2)-Grown and Air-Grown Chlamydomonas. Plant Physiol. 1987 Jul;84(3):757–761. doi: 10.1104/pp.84.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ogawa T. Mutants of Synechocystis PCC6803 Defective in Inorganic Carbon Transport. Plant Physiol. 1990 Oct;94(2):760–765. doi: 10.1104/pp.94.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Omata T., Carlson T. J., Ogawa T., Pierce J. Sequencing and Modification of the Gene Encoding the 42-Kilodalton Protein in the Cytoplasmic Membrane of Synechococcus PCC 7942. Plant Physiol. 1990 May;93(1):305–311. doi: 10.1104/pp.93.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pierce J., Carlson T. J., Williams J. G. A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5753–5757. doi: 10.1073/pnas.86.15.5753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Price G. D., Badger M. R. Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO(2)-Requiring Phenotype : Evidence for a Central Role for Carboxysomes in the CO(2) Concentrating Mechanism. Plant Physiol. 1989 Oct;91(2):505–513. doi: 10.1104/pp.91.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reddy K. J., Masamoto K., Sherman D. M., Sherman L. A. DNA sequence and regulation of the gene (cbpA) encoding the 42-kilodalton cytoplasmic membrane carotenoprotein of the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol. 1989 Jun;171(6):3486–3493. doi: 10.1128/jb.171.6.3486-3493.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scanlan D. J., Bloye S. A., Mann N. H., Hodgson D. A., Carr N. G. Construction of lacZ promoter probe vectors for use in Synechococcus: application to the identification of CO2-regulated promoters. Gene. 1990 May 31;90(1):43–49. doi: 10.1016/0378-1119(90)90437-v. [DOI] [PubMed] [Google Scholar]
  17. Suzuki K., Marek L. F., Spalding M. H. A Photorespiratory Mutant of Chlamydomonas reinhardtii. Plant Physiol. 1990 May;93(1):231–237. doi: 10.1104/pp.93.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES