Abstract
The sn-1,2-diacylglycerol (DAG) content and molecular species composition of Dunaliella salina whole cells and cell fractions were measured by complementary high performance liquid chromatography and gas chromatography techniques. At 4.2 nanomoles per 100 nanomoles lipid phosphorus, the whole cell DAG level was high in comparison with most animal tissues. The DAG concentration was highest in the microsome-enriched fraction, followed by that in the chloroplast and in the plasma membrane fractions. The predominant DAG molecular species in all cell fractions contained oleic (18:1), linoleic (18:2), or linolenic (18:3) acid in the sn-1 position and palmitate (16:0) in the sn-2 position. Recent studies have raised the possibility of DAG serving a signal transducing function in osmotically stressed D. salina cells. During the first 30 seconds following hypoosmotic shock, there was a 40% increase in the plasma membrane DAG content, whereas the DAG content of the microsome-enriched fraction was unchanged. On a nanomole per 100 nanomoles phospholipid basis, the rise in plasma membrane DAG nearly matched the previously reported (KJ Einspahr, TC Peeler, GA Thompson Jr [1988] J Biol Chem 263: 5775-5779) transient fall in phosphatidylinositol 4,5-bisphosphate. Furthermore, 18:1/16:0 DAG, one of the major plasma membrane DAG molecular species increasing in amount after hypoosmotic shock, was the characteristic molecular species of plasma membrane phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate, but no other lipid of that membrane. Evidence was found for a rise in 16:0/18:2 and 16:0/18:3 DAG as well following hypoosmotic shock. This pattern suggested that phosphatidylcholine hydrolysis also contributed to the stress-induced production of DAG in the D. salina plasma membrane. The extent of the sudden DAG increase was sufficient to consider it a potential second messenger in phospholipase C-mediated signal transduction.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Augert G., Blackmore P. F., Exton J. H. Changes in the concentration and fatty acid composition of phosphoinositides induced by hormones in hepatocytes. J Biol Chem. 1989 Feb 15;264(5):2574–2580. [PubMed] [Google Scholar]
- Augert G., Bocckino S. B., Blackmore P. F., Exton J. H. Hormonal stimulation of diacylglycerol formation in hepatocytes. Evidence for phosphatidylcholine breakdown. J Biol Chem. 1989 Dec 25;264(36):21689–21698. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Cho S. H., Thompson G. A. Galactolipids of Thylakoid Pigment Protein Complexes Separated Electrophoretically from Thylakoids of Dunaliella salina Labeled with Radioactive Fatty Acids. Plant Physiol. 1989 Jun;90(2):610–616. doi: 10.1104/pp.90.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook S. J., Palmer S., Plevin R., Wakelam M. J. Mass measurement of inositol 1,4,5-trisphosphate and sn-1,2-diacylglycerol in bombesin-stimulated Swiss 3T3 mouse fibroblasts. Biochem J. 1990 Jan 15;265(2):617–620. doi: 10.1042/bj2650617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einspahr K. J., Maeda M., Thompson G. A., Jr Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock. J Cell Biol. 1988 Aug;107(2):529–538. doi: 10.1083/jcb.107.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einspahr K. J., Peeler T. C., Thompson G. A., Jr Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J Biol Chem. 1988 Apr 25;263(12):5775–5779. [PubMed] [Google Scholar]
- Einspahr K. J., Peeler T. C., Thompson G. A. Phosphatidylinositol 4,5-Bisphosphate Phospholipase C and Phosphomonoesterase in Dunaliella salina Membranes. Plant Physiol. 1989 Jul;90(3):1115–1120. doi: 10.1104/pp.90.3.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einspahr K. J., Thompson G. A. Transmembrane Signaling via Phosphatidylinositol 4,5-Bisphosphate Hydrolysis in Plants. Plant Physiol. 1990 Jun;93(2):361–366. doi: 10.1104/pp.93.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukami K., Takenawa T. Quantitative changes in polyphosphoinositides 1,2-diacylglycerol and inositol 1,4,5-trisphosphate by platelet-derived growth factor and prostaglandin F2 alpha. J Biol Chem. 1989 Sep 5;264(25):14985–14989. [PubMed] [Google Scholar]
- Kito M., Takamura H., Narita H., Urade R. A sensitive method for quantitative analysis of phospholipid molecular species by high-performance liquid chromatography. J Biochem. 1985 Aug;98(2):327–331. doi: 10.1093/oxfordjournals.jbchem.a135285. [DOI] [PubMed] [Google Scholar]
- Lynch D. V., Thompson G. A. Microsomal Phospholipid Molecular Species Alterations during Low Temperature Acclimation in Dunaliella. Plant Physiol. 1984 Feb;74(2):193–197. doi: 10.1104/pp.74.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matozaki T., Williams J. A. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis. J Biol Chem. 1989 Sep 5;264(25):14729–14734. [PubMed] [Google Scholar]
- McConnell F. M., Goldstein L. Intracellular signals and volume regulatory response in skate erythrocytes. Am J Physiol. 1988 Dec;255(6 Pt 2):R982–R987. doi: 10.1152/ajpregu.1988.255.6.R982. [DOI] [PubMed] [Google Scholar]
- Memon A. R., Boss W. F. Rapid light-induced changes in phosphoinositide kinases and H(+)-ATPase in plasma membrane of sunflower hypocotyls. J Biol Chem. 1990 Sep 5;265(25):14817–14821. [PubMed] [Google Scholar]
- Morré D. J., Pfaffmann H., Drobes B., Wilkinson F. E., Hartmann E. Diacylglycerol Levels Unchanged during Auxin-Stimulated Growth of Excised Hypocotyl Segments of Soybean. Plant Physiol. 1989 May;90(1):275–279. doi: 10.1104/pp.90.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morse M. J., Crain R. C., Coté G. G., Satter R. L. Light-Stimulated Inositol Phospholipid Turnover in Samanea saman Pulvini : Increased Levels of Diacylglycerol. Plant Physiol. 1989 Mar;89(3):724–727. doi: 10.1104/pp.89.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morse M. J., Crain R. C., Satter R. L. Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7075–7078. doi: 10.1073/pnas.84.20.7075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peeler T. C., Stephenson M. B., Einspahr K. J., Thompson G. A. Lipid Characterization of an Enriched Plasma Membrane Fraction of Dunaliella salina Grown in Media of Varying Salinity. Plant Physiol. 1989 Mar;89(3):970–976. doi: 10.1104/pp.89.3.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pessin M. S., Baldassare J. J., Raben D. M. Molecular species analysis of mitogen-stimulated 1,2-diglycerides in fibroblasts. Comparison of alpha-thrombin, epidermal growth factor, and platelet-derived growth factor. J Biol Chem. 1990 May 15;265(14):7959–7966. [PubMed] [Google Scholar]
- Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
- Raben D. M., Pessin M. S., Rangan L. A., Wright T. M. Kinetic and molecular species analyses of mitogen-induced increases in diglycerides: evidence for stimulated hydrolysis of phosphoinositides and phosphatidylcholine. J Cell Biochem. 1990 Oct;44(2):117–125. doi: 10.1002/jcb.240440206. [DOI] [PubMed] [Google Scholar]
- Van Veldhoven P. P., Bell R. M. Effect of harvesting methods, growth conditions and growth phase on diacylglycerol levels in cultured human adherent cells. Biochim Biophys Acta. 1988 Mar 25;959(2):185–196. doi: 10.1016/0005-2760(88)90030-6. [DOI] [PubMed] [Google Scholar]
- Wright T. M., Rangan L. A., Shin H. S., Raben D. M. Kinetic analysis of 1,2-diacylglycerol mass levels in cultured fibroblasts. Comparison of stimulation by alpha-thrombin and epidermal growth factor. J Biol Chem. 1988 Jul 5;263(19):9374–9380. [PubMed] [Google Scholar]