Abstract
In previous studies, we have shown that the temperature dependent vibrational frequency of the CH2 stretch in hydrocarbons in intact pollen grains can be recorded with Fourier transform infrared spectroscopy and used to measure phase transition temperatures (Tm) in these hydrocarbons. Circumstantial evidence was provided that the major contribution to the signal seen in these samples was from membrane phospholipids, and that sucrose in the dry pollen grains reduced Tm of those phospholipids. In the current study, we clarify why a major constituent of the pollen grains, neutral lipids contained in discrete lipid droplets, does not contribute significantly to the signal. Further, we have isolated membranes from the pollen and show that Tm in the isolated membranes rises from −6°C in the hydrated membranes to 58°C when the membranes are dried without the addition of sucrose. However, when the isolated membranes are dried in the presence of increasing amounts of sucrose, Tm fell steadily, reaching a minimal value of 31°C, a figure in good agreement with that seen in the intact pollen grains. The amount of sucrose required to depress Tm maximally in these membranes is also apparently in agreement with that found in the intact pollen, suggesting that sucrose depresses Tm in the pollen.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caffrey M., Werner B. G., Priestley D. A. A crystalline lipid phase in a dry biological system: evidence from X-ray diffraction analysis of Typha latifolia pollen. Biochim Biophys Acta. 1987 Sep 4;921(1):124–134. doi: 10.1016/0005-2760(87)90178-0. [DOI] [PubMed] [Google Scholar]
- Carpenter J. F., Crowe L. M., Crowe J. H. Stabilization of phosphofructokinase with sugars during freeze-drying: characterization of enhanced protection in the presence of divalent cations. Biochim Biophys Acta. 1987 Jan 20;923(1):109–115. doi: 10.1016/0304-4165(87)90133-4. [DOI] [PubMed] [Google Scholar]
- Carpenter J. F., Martin B., Crowe L. M., Crowe J. H. Stabilization of phosphofructokinase during air-drying with sugars and sugar/transition metal mixtures. Cryobiology. 1987 Oct;24(5):455–464. doi: 10.1016/0011-2240(87)90049-6. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Crowe L. M., Carpenter J. F., Aurell Wistrom C. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987 Feb 15;242(1):1–10. doi: 10.1042/bj2420001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowe J. H., Crowe L. M., Carpenter J. F., Rudolph A. S., Wistrom C. A., Spargo B. J., Anchordoguy T. J. Interactions of sugars with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):367–384. doi: 10.1016/0304-4157(88)90015-9. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Crowe L. M., Hoekstra F. A. Phase transitions and permeability changes in dry membranes during rehydration. J Bioenerg Biomembr. 1989 Feb;21(1):77–91. doi: 10.1007/BF00762213. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Crowe L. M., Jackson S. A. Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Arch Biochem Biophys. 1983 Feb 1;220(2):477–484. doi: 10.1016/0003-9861(83)90438-1. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Hoekstra F. A., Crowe L. M., Anchordoguy T. J., Drobnis E. Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy. Cryobiology. 1989 Feb;26(1):76–84. doi: 10.1016/0011-2240(89)90035-7. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Hoekstra F. A., Crowe L. M. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc Natl Acad Sci U S A. 1989 Jan;86(2):520–523. doi: 10.1073/pnas.86.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowe L. M., Crowe J. H. Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim Biophys Acta. 1988 Dec 22;946(2):193–201. doi: 10.1016/0005-2736(88)90392-6. [DOI] [PubMed] [Google Scholar]
- Hoekstra F. A. Imbibitional chilling injury in pollen: involvement of the respiratory chain. Plant Physiol. 1984 Apr;74(4):815–821. doi: 10.1104/pp.74.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoekstra F. A., van Roekel T. Desiccation Tolerance of Papaver dubium L. Pollen during Its Development in the Anther: Possible Role of Phospholipid Composition and Sucrose Content. Plant Physiol. 1988 Nov;88(3):626–632. doi: 10.1104/pp.88.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoekstra F. A., van Roekel T. Isolation-Inflicted Injury to Mitochondria from Fresh Pollen Gradually Overcome by an Active Strengthening during Germination. Plant Physiol. 1983 Dec;73(4):995–1001. doi: 10.1104/pp.73.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Juaneda P., Rocquelin G. Rapid and convenient separation of phospholipids and non phosphorus lipids from rat heart using silica cartridges. Lipids. 1985 Jan;20(1):40–41. doi: 10.1007/BF02534360. [DOI] [PubMed] [Google Scholar]
- Koster K. L., Leopold A. C. Sugars and desiccation tolerance in seeds. Plant Physiol. 1988 Nov;88(3):829–832. doi: 10.1104/pp.88.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Womersley C., Uster P. S., Rudolph A. S., Crowe J. H. Inhibition of dehydration-induced fusion between liposomal membranes by carbohydrates as measured by fluorescence energy transfer. Cryobiology. 1986 Jun;23(3):245–255. doi: 10.1016/0011-2240(86)90050-7. [DOI] [PubMed] [Google Scholar]

