Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Dec;97(4):1527–1534. doi: 10.1104/pp.97.4.1527

Electrogenic Transport Properties of Growing Arabidopsis Root Hairs 1

The Plasma Membrane Proton Pump and Potassium Channels

Roger R Lew 1
PMCID: PMC1081196  PMID: 16668580

Abstract

Ion transport, measured using double-barreled micropipettes to obtain current-voltage relations, was examined in Arabidopsis thaliana root hairs that continued tip growth and cytoplasmic streaming after impalement with the micropipette. To do this required in situ measurements with no handling of the seedlings to avoid wounding responses, and conditions allowing good resolution microscopy in tandem with the electrophysiological measurements. Two ion transport processes were demonstrated. One was a tetraethylammonium-sensitive potassium ion current, inward at hyperpolarized potentials and outward at depolarized potentials. The addition of tetraethylammonium (a potassium channel blocker) caused the potential to hyperpolarize, indicating the presence of a net inward potassium current through the ion channels at the resting potential. The potassium influx was sufficient to “drive” cellular expansion based upon growth rates. Indeed, tetraethylammonium caused transient inhibition of tip growth. The other electrogenic process was the plasma membrane proton pump, measured by indirect inhibition with cyanide or direct inhibition by vanadate. The proton pump was the dominant contribution to the resting potential, with a very high current density of about 250 microamperes per square centimeter (seen only in young growing root hairs). The membrane potential generated by the proton pump presumably drives the potassium influx required for cellular expansion. The pump appears to be a constant current source over the voltage range −200 to 0 millivolts. With this system, it is now possible to study the physiology of a higher plant cell in dynamic living state using a broad range of cell biological and electrophysiological techniques.

Full text

PDF
1527

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blatt M. R. Interpretation of steady-state current-voltage curves: consequences and implications of current subtraction in transport studies. J Membr Biol. 1986;92(1):91–110. doi: 10.1007/BF01869018. [DOI] [PubMed] [Google Scholar]
  2. Blatt M. R., Slayman C. L. KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell. J Membr Biol. 1983;72(3):223–234. doi: 10.1007/BF01870589. [DOI] [PubMed] [Google Scholar]
  3. Blatt M. R., Thiel G., Trentham D. R. Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature. 1990 Aug 23;346(6286):766–769. doi: 10.1038/346766a0. [DOI] [PubMed] [Google Scholar]
  4. Cosgrove D. Biophysical control of plant cell growth. Annu Rev Plant Physiol. 1986;37:377–405. doi: 10.1146/annurev.pp.37.060186.002113. [DOI] [PubMed] [Google Scholar]
  5. Eisenberg R. S., Engel E. The spatial variation of membrane potential near a small source of current in a spherical cell. J Gen Physiol. 1970 Jun;55(6):736–757. doi: 10.1085/jgp.55.6.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harper J. F., Surowy T. K., Sussman M. R. Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1234–1238. doi: 10.1073/pnas.86.4.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Katsuhara M., Mimura T., Tazawa M. ATP-Regulated Ion Channels in the Plasma Membrane of a Characeae Alga, Nitellopsis obtusa. Plant Physiol. 1990 May;93(1):343–346. doi: 10.1104/pp.93.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ketchum K. A., Shrier A., Poole R. J. Characterization of potassium-dependent currents in protoplasts of corn suspension cells. Plant Physiol. 1989 Apr;89(4):1184–1192. doi: 10.1104/pp.89.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lew R. R., Spanswick R. M. Characterization of the Electrogenicity of Soybean (Glycine max L.) Roots : ATP Dependence and Effect of ATPase Inhibitors. Plant Physiol. 1984 May;75(1):1–6. doi: 10.1104/pp.75.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lew R. R. Substrate regulation of single potassium and chloride ion channels in Arabidopsis plasma membrane. Plant Physiol. 1991 Feb;95(2):642–647. doi: 10.1104/pp.95.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Macara I. G., Kustin K., Cantley L. C., Jr Glutathione reduces cytoplasmic vanadate. Mechanism and physiological implications. Biochim Biophys Acta. 1980 Apr 17;629(1):95–106. doi: 10.1016/0304-4165(80)90268-8. [DOI] [PubMed] [Google Scholar]
  12. Okada K., Shimura Y. Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science. 1990 Oct 12;250(4978):274–276. doi: 10.1126/science.250.4978.274. [DOI] [PubMed] [Google Scholar]
  13. Schiefelbein J. W., Somerville C. Genetic Control of Root Hair Development in Arabidopsis thaliana. Plant Cell. 1990 Mar;2(3):235–243. doi: 10.1105/tpc.2.3.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Serrano R., Kielland-Brandt M. C., Fink G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986 Feb 20;319(6055):689–693. doi: 10.1038/319689a0. [DOI] [PubMed] [Google Scholar]
  15. Willsky G. R., White D. A., McCabe B. C. Metabolism of added orthovanadate to vanadyl and high-molecular-weight vanadates by Saccharomyces cerevisiae. J Biol Chem. 1984 Nov 10;259(21):13273–13281. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES