Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jan 15:2024.01.13.575510. [Version 1] doi: 10.1101/2024.01.13.575510

Pulsed low-dose-rate radiation (PLDR) reduces the tumor-promoting responses induced by conventional chemoradiation in pancreatic cancer-associated fibroblasts

Janusz Franco-Barraza, Tiffany Luong, Jessica K Wong, Kristopher Raghavan, Elizabeth Handorf, Débora B Vendramini-Costa, Ralph Francescone, Jaye C Gardiner, Joshua E Meyer, Edna Cukierman
PMCID: PMC10827071  PMID: 38293200

Abstract

Pancreatic cancer is becoming increasingly deadly, with treatment options limited due to, among others, the complex tumor microenvironment (TME). This short communications study investigates pulsed low-dose-rate radiation (PLDR) as a potential alternative to conventional radiotherapy for pancreatic cancer neoadjuvant treatment.

Our ex vivo research demonstrates that PLDR, in combination with chemotherapy, promotes a shift from tumor-promoting to tumor-suppressing properties in a key component of the pancreatic cancer microenvironment we called CAFu (cancer-associated fibroblasts and selfgenerated extracellular matrix functional units). This beneficial effect translates to reduced desmoplasia (fibrous tumor expansion) and suggests PLDR’s potential to improve total neoadjuvant therapy effectiveness.

To comprehensively assess this functional shift, we developed the HOST-Factor, a single score integrating multiple biomarkers. This tool provides a more accurate picture of CAFu function compared to individual biomarkers and could be valuable for guiding and monitoring future therapeutic strategies.

Our findings support the ongoing NCT04452357 clinical trial testing PLDR safety and TME normalization potential in pancreatic cancer patients. The HOST-Factor will be used in samples collected from this trial to validate its potential as a key tool for personalized medicine in this aggressive disease.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES