Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2024 Mar 4:2024.01.18.24301438. Originally published 2024 Jan 19. [Version 2] doi: 10.1101/2024.01.18.24301438

Bifidobacterium longum modifies a nutritional intervention for stunting in Zimbabwean infants

Ethan K Gough, Thaddeus J Edens, Lynnea Carr, Ruairi C Robertson, Kuda Mutasa, Robert Ntozini, Bernard Chasekwa, Hyun Min Geum, Iman Baharmand, Sandeep K Gill, Batsirai Mutasa, Mduduzi N N Mbuya, Florence D Majo, Naume Tavengwa, Freddy Francis, Joice Tome, Ceri Evans, Margaret Kosek, Andrew J Prendergast, Amee R Manges; The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team
PMCID: PMC10827232  PMID: 38293149

Abstract

Child stunting is an indicator of chronic undernutrition and reduced human capital. However, it remains a poorly understood public health problem. Small-quantity lipid-based nutrient supplements (SQ-LNS) have been widely tested to reduce stunting, but have modest effects. The infant intestinal microbiome may contribute to stunting, and is partly shaped by mother and infant histo-blood group antigens (HBGA). We investigated whether mother-infant fucosyltransferase status, which governs HBGA, and the infant gut microbiome modified the impact of SQ-LNS on stunting at age 18 months among Zimbabwean infants in the SHINE Trial ( NCT01824940 ). We found that mother-infant fucosyltransferase discordance and Bifidobacterium longum reduced SQ-LNS efficacy. Infant age-related microbiome shifts in B. longum subspecies dominance from infantis , a proficient human milk oligosaccharide utilizer, to suis or longum , proficient plant-polysaccharide utilizers, were partly influenced by discordance in mother-infant FUT2+/FUT3- phenotype, suggesting that a "younger" microbiome at initiation of SQ-LNS reduces its benefits on stunting.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES