Abstract
Emerging evidence indicates that the JNK/c-Jun cascade is activated in neurons of the Alzheimer's disease brain and suggests its involvement in abnormal processes, ranging from tau phosphorylation to neuronal death. Substantial new data have accumulated on the functional relevance of causative genes in familial Alzheimer's disease and the pathological processes that occur within neurons. In this review, we summarize reported findings of the JNK/c-Jun cascade in Alzheimer's disease and discuss the relationship between the cascade and other pathological processes. We suggest that the effort to connect amyloid deposition with intracellular activation of the JNK/c-Jun cascade may modify the amyloid theory of Alzheimer's disease. Therapeutic approaches targeting the JNK/c-Jun cascade and other signaling may complement therapeutic strategies directed at reducing amyloid deposition.
Keywords: Alzheimer's disease, amyloid, CDK5, cell death, c-Jun, c-Jun N-terminal kinase (JNK), GSK-3, neuron, phosphorylation, presenilin, SAPK, tau, transcription
Full Text
The Full Text of this article is available as a PDF (146.1 KB).
Contributor Information
Hitohi Okazawa, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Molecular Therapeutics, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
Steven Estus, Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky.
References
- Alzheimer A: Uber eine eigenartige Erkrankung der Hirnrinde. Zbl Neurol. Psychiat. 1907; 18: 177-179. [Google Scholar]
- Goate A, Chartier-Harlin MC, Mullan M, et al.: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991; 349: 704-706. [DOI] [PubMed] [Google Scholar]
- Schellenberg GD, Bird TD, Wijsman ED, et al.: Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science. 1992; 258: 668-671. [DOI] [PubMed] [Google Scholar]
- Scherrington R, Rogaev EI, Liang Y, et al.: Cloning of a novel gene bearing missense mutations in early onset familial Alzheimer disease. Nature. 1995; 375: 754-760. [DOI] [PubMed] [Google Scholar]
- Levy-Lahad E, Wasco W, Poorkaj P, et al.: Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 1995; 269: 973-977. [DOI] [PubMed] [Google Scholar]
- Strittmatter WJ, Saunders AM, Schmechel D, et al.: Apolipoprotein E: High-avidity binding to Β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Nat Acad Sci USA. 1993; 90: 1977-1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blacker D, Wilcox MA, Laird NM, et al.: Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nature Genet. 1998; 19: 357-360. [DOI] [PubMed] [Google Scholar]
- Kang DE, Saito T, Chen X, et al.: Genetic association of the lowdensity lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer's disease. Neurology. 1997; 49: 56-61. [DOI] [PubMed] [Google Scholar]
- Bertram L, Blacker D, Mullin K, et al.: Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. Science. 2000; 290: 2302-2303. [DOI] [PubMed] [Google Scholar]
- Ertekin-Taner N, Graff-Radford N, Younkin LH, et al.: Linkage of plasma AΒ 42 to a quantitative locus on chromosome 10 in lateonset Alzheimer's disease pedigrees. Science. 2000; 290: 2303-2304. [DOI] [PubMed] [Google Scholar]
- Myers A, Holmans P, Marshall H, et al.: Susceptibility locus for Alzheimer's disease on chromosome 10. Science. 2000; 290: 2304-2305. [DOI] [PubMed] [Google Scholar]
- Xia W, Zhang J, Perez R, et al.: Interaction between amyloid precursor protein and presenilins in mammalian cells: Implication for the pathogenesis of Alzheimer's disease. Proc Nat Acad Sci USA. 1997; 94: 8208-8213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waragai M, Imafuku I, Takeuchi S, et al.: Presenilin-1 binds to amyloid precursor protein directly. Biochem Biophys Res Commun. 1997; 239: 480-482. [DOI] [PubMed] [Google Scholar]
- Weidemann A, Paliga K, Durrwang U, et al.: Formation of stable complexes between two Alzheimer's disease products: Presenilin-2 and beta-amyloid precursor protein. Nature Med. 1997; 3: 328-332. [DOI] [PubMed] [Google Scholar]
- Iwatsubo T, Okada A, Suzuki N, et al.: Visualization of AΒ 42(43) and AΒ 40 in senile plaques with end-specific A monoclonals: Evidence that an initially deposited species is AΒ 42(43). Neuron. 1994; 13: 45-53. [DOI] [PubMed] [Google Scholar]
- Selkoe D: Alzheimer's disease: Genes, proteins, and therapy. Physiol Rev. 2001; 81: 741-766. [DOI] [PubMed] [Google Scholar]
- Li YM, Lai MT, Xu M, et al.: Presenilin-1 is linked with γ-secretase activity in the detergent solublized state. Proc Nat Acad Sci USA. 2000; 97; 6138-6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeStrooper B, Saftig P, Craessaerts K, et al.: Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998; 391: 387-390. [DOI] [PubMed] [Google Scholar]
- DeStrooper B, Annaert W, Cupers P, et al.: A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature.1999; 398: 518-522. [DOI] [PubMed] [Google Scholar]
- Wolfe MS, Xia W, Ostaszewski BL, et al.: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature. 1999; 398: 513-517. [DOI] [PubMed] [Google Scholar]
- Herreman A, Serneels L, Annaert W, et al.: Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biol. 2000; 2: 461-462. [DOI] [PubMed] [Google Scholar]
- Zhang Z, Nadeau P, Song W, et al.: Presenilins are required for γsecretase cleavage of Β-APPP and transmembrane cleavage of Notch-1. Nature Cell Biol. 2000; 2: 463-465. [DOI] [PubMed] [Google Scholar]
- Li YM, Xu M, Lai MT, et al.: Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin-1. Nature. 2000; 405: 689-694. [DOI] [PubMed] [Google Scholar]
- Wolfe MS: Presenilins and γ-Secretase: Structure meets function. J Neurochem. 2001; 76: 1615-1620. [DOI] [PubMed] [Google Scholar]
- Yu G, Nishimura M, Arakawa S, et al.: Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and APP processing. Nature. 2000; 407: 48-54. [DOI] [PubMed] [Google Scholar]
- Small D: The role of presenilins in γ-secretase activity: catalyst or cofactor? J Neurochem. 2001; 76: 1612-1614. [DOI] [PubMed] [Google Scholar]
- Cechler F: The multiple paradozes of presenilins. J Neurochem. 2001; 76: 1621-1627. [DOI] [PubMed] [Google Scholar]
- Capell A, Steiner H, Romig H, et al.: Presenilin-1 differentially facilitates endoproteolysis of the Β-amyloid precursor protein and Notch. Nature Cell Biol. 2000; 2: 205-211. [DOI] [PubMed] [Google Scholar]
- Petit A, Bihel F, daCosta AV, et al.: New protease inhibitors prevent γ-secretase-mediated production of AΒ 40/42 without affecting Notch cleavage. Nature Cell Biol. 2001; 3: 507-511. [DOI] [PubMed] [Google Scholar]
- VanGassen G, Annaert W, VanBroeckhoven C: Binding partners of Alzheimer's disease proteins: Are they physiologically relevant? Neurobiol Dis. 2000; 7: 135-151. [DOI] [PubMed] [Google Scholar]
- Schenk D, Barbour R, Dunn W, et al.: Immunization with amyloid-Β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999; 400: 173-177. [DOI] [PubMed] [Google Scholar]
- Janus C, Pearson J, McLaurin J, et al.: A peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature. 2000; 408: 979-982. [DOI] [PubMed] [Google Scholar]
- Morgan D, Diamond DM, Gottschall PE, et al.: A vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature. 2000; 408: 982-985. [DOI] [PubMed] [Google Scholar]
- Bard F, Cannon C, Barbour R, et al.: Peripherally administered antibodies against amyloid peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 2000; 6: 916-919. [DOI] [PubMed] [Google Scholar]
- Hardy J, Allsop D: Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991; 12: 383-388. [DOI] [PubMed] [Google Scholar]
- Hardy JA, Higgins GA: Alzheimer's disease: The amyloid cascade hypothesis. Science. 1992; 256: 184-185. [DOI] [PubMed] [Google Scholar]
- Selkoe DJ: Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 1997; 20: 154-159. [DOI] [PubMed] [Google Scholar]
- Ishihara T, Hong M, Zhang B, et al.: Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron. 1999; 24: 751-762. [DOI] [PubMed] [Google Scholar]
- Lee VM, Goedert M, Trojanowski JQ: Neurodegenerative tauopathies. Annu Rev Neurosci. 2001; 24: 1121-1159. [DOI] [PubMed] [Google Scholar]
- Hardy T, Duff K, Hardy J, et al.: Genetic dissection of Alzheimer's disease and related dementias: Amyloid and its relationship to tau. Nature Neurosci. 1998; 1: 355-358. [DOI] [PubMed] [Google Scholar]
- Ihara Y: PHF and PHF-like fibrils—Cause or consequence? Neurobiol Aging. 2001; 22: 123-126. [DOI] [PubMed] [Google Scholar]
- Wittmann CW, Wszolek MF, Shulman JM, et al.Tauopathy in drosophila: Neurodegeneration without neurofibrillary tangles. Science. 2001; 293: 711-714. [DOI] [PubMed] [Google Scholar]
- Klein WL, Krafft GA, Finch CE, et al.: Targeting small A oligomers: The solution to an Alzheimer's conundrum? Trends Neurosci. 2001; 24: 219-224. [DOI] [PubMed] [Google Scholar]
- Gouras GK, Tsai J, Naslund J, et al.: Intraneural A 42 accumulation in human brain. Am J Pathol. 2000; 156: 15-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh DM, Tseng BP, Rydel RE, et al.: The oligomerization of amyloid-protein begins intracellularly in cells derived from human brain. Biochemistry. 2000; 39: 10831-10839. [DOI] [PubMed] [Google Scholar]
- Mochizuki A, Tamaoka A, Shimohata Y, et al.: A 42-positive non-pyramidal neurons around amyloid plaques in Alzheimer's disease. Lancet. 2000; 355: 42-43. [DOI] [PubMed] [Google Scholar]
- Shoji M, Iwakami N, Takeuchi S, et al.: JNK activation is associated with intracellular-amyloid accumulation. Mol Brain Res. 2001; 85: 221-223. [DOI] [PubMed] [Google Scholar]
- Papolla MA, Omar RA, Kim KS, et al.: Immunological evidence of oxidative stress in Alzheimer's disease. Am J Pathol. 1992; 140: 621-628. [PMC free article] [PubMed] [Google Scholar]
- Smith MA, Taneda S, Richey PL, et al.: Advanced Maillard reaction products are associated with Alzheimer disease pathology. Proc Nat Acad Sci USA. 1994; 91: 5710-5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vitek MP, Bhattacharya K, Glendening JM, et al.: Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Nat Acad Sci USA. 1994; 91: 4766-4770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behl C, Davis JB, Lesley R, et al.: Hydrogen peroxide mediates amyloid protein toxicity. Cell. 1994; 77: 817-827. [DOI] [PubMed] [Google Scholar]
- Peterson C, Goldman JE: Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc Nat Acad Sci USA. 1986; 83: 2758-2762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattson MP, Cheng B, Davis D, et al.: -amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci. 1992; 12: 379-389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo Q, Fu W, Sopher BL, et al.: Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Med. 1999; 5: 101-106. [DOI] [PubMed] [Google Scholar]
- Kobayashi S, Ishiguro K, Omori A, et al.: A cdc2-related kinase PSSALRE/cdk5 is homologous with the 30kDa subunit of tau protein kinase II, a proline-directed protein kinase associated with microtuble. FEBS Lett. 1993; 335: 171-175. [DOI] [PubMed] [Google Scholar]
- Baumann K, Mandelkow EM, Biernat J, et al.: Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 1993; 336: 417-424. [DOI] [PubMed] [Google Scholar]
- Uchida T, Ishiguro K, Ohnuma J, et al.: Precursor of cdk5 activator, the 23 kDa subunit of tau protein kinase II: Its sequence and developmental change in brain. FEBS Lett. 1994; 355: 35-40. [DOI] [PubMed] [Google Scholar]
- Patrick GN, Zukerberg L, Nikolic M, et al.: Conversion of p35 to p24 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999; 402: 615-622. [DOI] [PubMed] [Google Scholar]
- Hanger DP, Hughes K, Woodgett JR, et al.: Glycogen synthetase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localization of the kinase. Neurosci Lett. 1992; 147: 58-62. [DOI] [PubMed] [Google Scholar]
- Yang SD, Song JS, Yu JS, et al.: Protein kinase FA/GSK-3 phosphorylates tau on Ser 235-Pro and Ser 404-Pro that are abnormally phosphorylated in Alzheimer's disease brain. J Neurochem. 1993; 61: 1742-1747. [DOI] [PubMed] [Google Scholar]
- Takashima A, Murayama M, Murayama O, et al.: Presenilin 1 associates with glycogen synthetase kinase 3beta and its substrate tau. Proc Nat Acad Sci USA. 1998; 96: 9637-9641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goedert M, Hasegawa M, Jakes R, et al.: Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett. 1997; 409: 57-62. [DOI] [PubMed] [Google Scholar]
- Reynolds CH, Utton MA, Gibb GM, et al.: Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylates tau protein. J Neurochem. 1997; 68: 1736-1744. [DOI] [PubMed] [Google Scholar]
- Goedert M, Hasegawa M, Jakes R, et al.: Phosphorylation of microtuble-associated protein tau by stress-activated protein kinases. FEBS Lett. 1997; 409: 57-62. [DOI] [PubMed] [Google Scholar]
- Zhu X, Raina AK, Rottkamp CA, et al.: Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem. 2001; 76: 435-441. [DOI] [PubMed] [Google Scholar]
- Kihiko ME, Tucker HM, Rydel RE, et al.: c-Jun contributes to amyloid-induced neuronal apoptosis but is not necessary for amyloid-induced c-jun induction. J Neurochem. 1999; 73: 2609-2612. [DOI] [PubMed] [Google Scholar]
- Anderson AJ, Cumming BJ, Cotman CW: Increased immunoreactivity for Jun-and Fos-related proteins in Alzheimer's disease: Association with pathology. Exp Neurol. 1994; 126: 286-295. [DOI] [PubMed] [Google Scholar]
- MacGibbon GA, Lawlor PA, Walton M, et al.: Expression of Fos, Jun, and Krox family proteins in Alzheimer's disease. Exp Neurol. 1995; 147: 316-332. [DOI] [PubMed] [Google Scholar]
- Marcus DL, Strafaci JA, Miller DC, et al.: Quantitative neuronal c-fos and c-jun expression in Alzheimer's disease. Neurobiol Aging. 1998; 5: 393-400. [DOI] [PubMed] [Google Scholar]
- Imafuku I, Masaki T, Waragai M, et al.: Presenilin-1 suppresses the function of c-jun homodimers via intgeraction with QM/Jif-1. J Cell Biol. 1999; 147: 121-133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim JW, Chang T-S, Lee JE, et al.: Negative regulation of SAPK/JNK signaling pathway by presenilin 1. J Cell Biol. 2001; 153: 457-463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katayama T, Imaizumi K, Sato N, et al.: Presenilin-1 mutations down-regulate the signalling pathway of the unfolded-protein response. Nature Cell Biol. 1999; 8: 479-485. [DOI] [PubMed] [Google Scholar]
- Niwa M, Sidrauski C, Kaufman RJ, et al.: A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell. 1999; 99: 691-702. [DOI] [PubMed] [Google Scholar]
- Sato N, Urano F, Yoon Leem J, et al.: Up-regulation of BiP and CHOP by the unfolded protein response is independent of presenilin expression. Nature Cell Biol. 2000; 12: 863-870. [DOI] [PubMed] [Google Scholar]
- Imaizumi K, Katayama T, Tohyama M: Presenilin and the UPR. Nature Cell Biol. 2001; 3: E104-E104. [DOI] [PubMed] [Google Scholar]
- Urano F, Wang X, Bertolotti A, et al.: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRS1. Science. 2000; 287: 664-666. [DOI] [PubMed] [Google Scholar]
- Kovacs DM, Wasco W, Witherby J, et al.: The upstream stimulatory factor functionally interacts with the Alzheimer amyloid-protein precursor gene. Hum Mol Genet. 1995; 4: 1527-1533. [DOI] [PubMed] [Google Scholar]
- Oppenheim RW: Cell death during development of the nervous system. Ann Rev Neurosci. 1991; 14: 453-501. [DOI] [PubMed] [Google Scholar]
- Gorin PD, Johnson EM, Jr.: Effects of long-term nerve growth factor deprivation on the nervous system of the adult rat: an experimental approach. Brain Res. 1980; 198: 27-42. [DOI] [PubMed] [Google Scholar]
- Deckwerth TL, Johnson EM, Jr.: Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor (NGF). J Cell Biol. 1993; 123: 1207-1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards SN, Tolkovsky AM: Characterization of apoptosis in cultured rat sympathetic neurons after nerve growth factor withdrawal. J Cell Biol. 1994; 124: 537-546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin DP, Schmidt RE, Distefano PS, et al.: Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol. 1988; 106: 829-844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenlund LJS, Deckwerth TL, Johnson EM, Jr.: Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death of protects sympathetic neurons from NGF deprivation induced apoptosis. Neuron. 1995; 14: 303-315. [DOI] [PubMed] [Google Scholar]
- Jordan J, Ghadge GD, Prehn JH, et al.: Expression of human copper/zinc-superoxide dismutase inhibits the death of rat sympathetic neurons caused by withdrawal of nerve growth factor. Mol Pharmacol. 1995; 47: 1095-1100. [PubMed] [Google Scholar]
- Estus S, Zaks W, Freeman R, et al.: Altered gene expression in neurons during programmed cell death: Identification of c-Jun as necessary for neuronal apoptosis. J Cell Biol. 1994; 127: 1717-1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ham J, Babij C, Whitfield J, et al.: A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron. 1995; 14: 927-939. [DOI] [PubMed] [Google Scholar]
- Deshmukh D, Vasilakos J, Deckwerth TL, et al.: Genetic and metabolic status of NGF-deprived sympathetic neurons saved by an inhibitor of ICE-family protease. J Cell Biol. 1997; 135: 1341-1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deshmukh M, Kuida K, Johnson EM, Jr.: Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol. 2000; 150: 131-143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putcha GV, Deshmukh M, Johnson EM, Jr.: Inhibition of apoptotic signaling cascades causes loss of trophic factor dependence during neuronal maturation. J Cell Biol. 2000; 149: 1011-1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eilers A., Whitfield J, Babij C, et al.: Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J Neurosci. 1998; 18: 1713-1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eilers A., Whitfield J, Shah B, et al.: Direct inhibition of c-Jun Nterminal kinase in sympathetic neurones prevents c-Jun promoter activation and NGF withdrawal-induced death. J Neurochem. 2001; 76: 1439-1454. [DOI] [PubMed] [Google Scholar]
- Tammariello SP, Landreth GE, Estus S: The role of Jun-kinases in apoptosis. In Mattson MP, Estus S, Rangnekar V (eds.): Programmed Cell Death: Cellular and Molecular Mechanisms. New York: Humana Press, 2001: 197-214. [Google Scholar]
- Xia Z, Dickens M, Raingeaud J, et al.: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995; 270: 1326-1331. [DOI] [PubMed] [Google Scholar]
- Maroney AC, Finn JP, Bozyczko-Coyne D, et al.: CEP-1347 (KT7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC12 cells from death evoked by three distinct insults. J Neurochem. 1999; 73: 1901-1912. [PubMed] [Google Scholar]
- Bruckner SR, Tammariello SP, Kuan CY, et al.: JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons. J Neurochem. 2001; 78: 298-303. [DOI] [PubMed] [Google Scholar]
- Behrens A, Sibilia M, Wagner EF: Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genet. 1999; 21: 326-329. [DOI] [PubMed] [Google Scholar]
- Putcha GV, Moulder KL, Golden JP, et al.: Induction of BIM, a proapoptotic BH3-only Bcl-2 family member, is critical for neuronal apoptosis. Neuron. 2001; 29: 615-628. [DOI] [PubMed] [Google Scholar]
- Whitfield J, Neame SJ, Paquet L, et al.: Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron. 2001; 29: 629-643. [DOI] [PubMed] [Google Scholar]
- Harris CA, Johnson EM, Jr.: BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem. 2001; 8 [published on line]. [DOI] [PubMed] [Google Scholar]
- Deshmukh M and Johnson EM, Jr.: Evidence of a novel event during neuronal death: Development of competence-to-die in response to cytoplasmic cytochrome C. Neuron. 1998; 21: 695-705. [DOI] [PubMed] [Google Scholar]
- Forloni G, Chiesa R, Smiroldo S, et al.: Apoptosis mediated neurotoxicity induced by chronic application of-amyloid fragment 25-35. Neuroreport. 1993; 4: 523-526. [DOI] [PubMed] [Google Scholar]
- Loo DT, Copani A, Pike CJ, et al.: Apoptosis is induced by AΒ-amyloid in cultured central nervous system neurons. Proc Nat Acad Sci USA. 1993; 90: 7951-7955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt JA, Pike CJ, Walencewicz-Wasserman AJ, et al.: Ultrastructural analysis of beta-amyloid-induced apoptosis in cultured hippocampal neurons. Brain Res. 1994; 661: 147-156. [DOI] [PubMed] [Google Scholar]
- Estus S, Tucker HM, Van Rooyen C, et al.: Aggregated amyloid-Β protein induces cortical neuronal apoptosis and concomitant apoptotic pattern of gene induction. J Neurosci. 1997; 17: 7736-7745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pike C, Walencewicz A, Glabe C, et al.: In vitro aging of Β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 1991; 563: 311-314. [DOI] [PubMed] [Google Scholar]
- Simmons LK, May PC, Tomaselli KJ, et al.: Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol. 1994; 45: 373-379. [PubMed] [Google Scholar]
- Anderson AJ, Pike CJ, Cotman CW: Differential induction of immediate early gene proteins in cultured neurons by Β-amyloid (AΒ): Association of c-Jun with AΒ induced apoptosis. J Neurochem. 1995; 65: 1487-1498. [DOI] [PubMed] [Google Scholar]
- Troy CM, Rabacchi SA, Xu Z, et al.: Β-amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem. 2001; 77: 157-164. [DOI] [PubMed] [Google Scholar]
- Yang DD, Kuan CY, Whitmarsh AJ, et al.: Absence of excitotoxicityinduced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature. 1997; 389: 865-870. [DOI] [PubMed] [Google Scholar]
- Lewis J, Dickson DW, Lin WL, et al.: Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001; 293: 1487-1491. [DOI] [PubMed] [Google Scholar]
- Irizarry MC, McNamara M, Fedorchak K, et al.: APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol. 1997; 56: 965-973. [DOI] [PubMed] [Google Scholar]
- Cherny RA, Atwood CS, Xilinas ME, et al.: Treatment with a copper-zinc chelator markedly and rapidly inhibitsamyloid accumulation in Alzheimer's disease transgenic mice. Neuron. 2001; 30: 665-676. [DOI] [PubMed] [Google Scholar]
- Bozyczko-Coyne D, O'Kane TM, Wu Z-L, et al.: CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with Ainduced cortical neuron apoptosis. J Neurochem. 2001; 77: 849-863. [DOI] [PubMed] [Google Scholar]
- Cross DAE, Culbert AA, Chalmers KA, et al.: Selective smallmolecule inhibitors of glycogen synthetase kinase-3 activity protect neurones from death. J Neurochem. 2001; 77: 94-102. [DOI] [PubMed] [Google Scholar]