Skip to main content
IUCrData logoLink to IUCrData
. 2024 Jan 26;9(Pt 1):x240033. doi: 10.1107/S2414314624000336

2-Amino­benzoxazole–oxalic acid (2/1)

Surayyo Razzoqova a, Batirbay Torambetov a,*, Jamoliddin Todjiev a, Shakhnoza Kadirova a, Aziz Ibragimov b, Abror Ruzmetov b, Jamshid Ashurov c
Editor: R J Butcherd
PMCID: PMC10842273  PMID: 38322032

In the title compound, proton transfer from oxalic acid to the N atom of the heterocycle has occurred to form a 2:1 molecular salt. In the extended structure, N—H⋯O hydrogen bonds link the components into [100] chains, which feature R 2 2(8) and R 4 4(14) loops.

Keywords: crystal structure, 2-aminobenzoxazole, mol­ecular structure, co-crystal, hydrogen bonds

Abstract

In the title compound, 2C7H7N2O+·C2O4 2−, proton transfer from oxalic acid to the N atom of the heterocycle has occurred to form a 2:1 molecular salt. In the extended structure, N—H⋯O hydrogen bonds link the components into [100] chains, which feature R 2 2(8) and R 4 4(14) loops. graphic file with name x-09-x240033-scheme1-3D1.jpg

Structure description

2-Amino­benzoxazole has gained significant attention in the field of organic chemistry due to its diverse range of applications and properties. This heterocyclic compound exhibits intriguing structural features and has demonstrated potential utility in the development of pharmaceuticals and agrochemicals and in materials science (Hwang et al., 2006; Potashman et al., 2007). With its aromatic and nitro­gen-containing structural motifs, 2-amino­benzoxazole has emerged as a key scaffold for the synthesis of biologically active mol­ecules and advanced materials. Herein, we report on the crystal structure analysis of a new 2-amino­benzoxazole–oxalic acid mol­ecular salt.

The title organic salt crystallizes in the monoclinic space group P21/n. The mol­ecular structure of the organic salt is shown in Fig. 1. The geometric parameters of the arene and oxazole rings are similar to standard values and to those in other related structures (Ashurov et al., 2011, 2015; Wang et al., 2016). In the oxalate (OXL) part of the organic salt, two hydrogen atoms are transferred to the nitro­gen of the oxazole fragments, as in other 2-amino­benzoxazole (2ABO) structures (Nandy et al., 2016; Razzoqova et al., 2022, 2023). As a result, the 2ABO and OXL ions form two closed eight-membered rings with an Inline graphic (8) graph-set notation (Etter et al., 1990). This represents a 1:2 acid-base association (Calva et al., 2011), with the first ring formed by N1—H1⋯O4 and N2—H2B⋯O3 hydrogen bonds and the second by N4—H4B⋯O6 and N3—H3A⋯O5 hydrogen bonds (Table 1). N2—H2A⋯O4 and N4—H4A⋯O5 hydrogen bonds further link the components into [100] chains, thereby forming a 14-membered ring with an Inline graphic (14) graph-set motif (Fig. 2) (Etter et al., 1990). The chains are shown in Fig. 3.

Figure 1.

Figure 1

The organic salt structure of 2ABO and OXL. Displacement ellipsoids are drawn at the 50% probability level and N—H⋯O hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.88 (1) 1.78 (1) 2.650 (2) 176 (3)
N2—H2A⋯O4i 0.87 (1) 2.00 (1) 2.863 (2) 174 (3)
N2—H2B⋯O3 0.86 (1) 1.94 (1) 2.770 (2) 164 (2)
C2—H2⋯O1ii 0.93 2.65 3.522 (2) 157
N3—H3A⋯O5 0.88 (1) 1.71 (1) 2.577 (2) 173 (3)
N4—H4A⋯O5ii 0.87 (1) 2.06 (1) 2.918 (2) 172 (2)
N4—H4B⋯O6 0.86 (1) 2.02 (1) 2.851 (2) 163 (2)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

The crystal structure of the organic salt structure of 2ABO and OXL viewed along the c axis.

Figure 3.

Figure 3

A fragment of a [100] chain in the extended structure of the title compound with hydrogen bonds shown as dashed lines.

The identification of the co-crystal as a salt is based on the successful refinement of the relevant H atoms using X-ray data. The proton transfer is further supported by the C—O distances [O4—C15 = 1.266 (2) Å, O3—C15 = 1.234 (2) Å, O5—C16 = 1.272 (2) Å and O6—C16 = 1.222 (2) Å] with differences between the bond lengths within each group of 0.032 and 0.050 Å; these differences differ from those for O—C distances in deproton­ated carboxyl groups. In non-deprotonated oxalic acid, these differences are greater (Sasaki et al., 2020). The mean planes of the carb­oxy­lic fragments in the OXL ion are turned by 10.13 (4)° from each other. In the crystal, the 2BAO and OXL ions are not coplanar, the 2ABO ions being inclined to the OXL ions by 18.81 (3) and 16.00 (5)°. The dihedral angle between the 2ABO ions is 37.52 (2)°.

Synthesis and crystallization

A 2:1 stoichiometric ratio of 2-amino­benzoxazole (0.268 g, 2.0 mmol) and oxalic acid (0.090 g, 1.0 mmol) was dissolved and mixed well in distilled water (5 ml). The mixture was stirred at room temperature for 30 minutes. The solution was then transferred to a vial with small holes in the cover to allow for evaporation. After about 3 weeks, cube-like single crystals of the title salt suitable for data collection were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula 2C7H7N2O+·C2O4 2−
M r 358.31
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 6.5080 (2), 17.6943 (7), 13.6264 (5)
β (°) 100.200 (4)
V3) 1544.34 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.03
Crystal size (mm) 0.17 × 0.14 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.157, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2960, 2960, 2288
R int 0.031
(sin θ/λ)max−1) 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.132, 1.04
No. of reflections 2960
No. of parameters 259
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.20

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2019/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624000336/bv4051sup1.cif

x-09-x240033-sup1.cif (58.7KB, cif)

Supporting information file. DOI: 10.1107/S2414314624000336/bv4051Isup2.cml

CCDC reference: 2324364

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

2C7H7N2O+·C2O42 F(000) = 744
Mr = 358.31 Dx = 1.541 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 6.5080 (2) Å Cell parameters from 2449 reflections
b = 17.6943 (7) Å θ = 4.1–70.3°
c = 13.6264 (5) Å µ = 1.03 mm1
β = 100.200 (4)° T = 293 K
V = 1544.34 (10) Å3 Needle, light yellow
Z = 4 0.17 × 0.14 × 0.12 mm

Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 2960 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2288 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.031
Detector resolution: 10.0000 pixels mm-1 θmax = 71.4°, θmin = 4.1°
ω scans h = −8→7
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) k = −20→21
Tmin = 0.157, Tmax = 1.000 l = −13→16
2960 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.1538P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2960 reflections Δρmax = 0.23 e Å3
259 parameters Δρmin = −0.20 e Å3
6 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The hydrogen atoms of amino groups and protonated nitro­gen atoms of oxzole groups were located in difference - Fourier maps and refined with restrained distances of 0.85±(1) Å. The H atoms of the benzene ring were calculated geometrically with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1212 (2) 0.44529 (8) 0.33805 (10) 0.0428 (3)
N1 0.4453 (2) 0.48755 (9) 0.38019 (11) 0.0381 (4)
H1 0.545 (3) 0.5203 (13) 0.3995 (19) 0.082 (9)*
C1 0.4597 (3) 0.41299 (11) 0.34764 (13) 0.0366 (4)
O2 1.3397 (2) 0.94256 (8) 0.42539 (10) 0.0410 (3)
N2 0.1639 (3) 0.56637 (11) 0.39934 (16) 0.0521 (5)
H2A 0.0351 (19) 0.5701 (15) 0.4069 (18) 0.069 (8)*
H2B 0.252 (3) 0.6021 (11) 0.4168 (18) 0.069 (8)*
C2 0.6255 (3) 0.36637 (12) 0.34088 (15) 0.0439 (5)
H2 0.762934 0.382283 0.360114 0.053*
O3 0.4839 (2) 0.67161 (8) 0.42640 (12) 0.0540 (4)
N3 1.0284 (2) 0.88951 (9) 0.42134 (12) 0.0381 (4)
H3A 0.927 (3) 0.8578 (14) 0.427 (2) 0.090 (10)*
C3 0.5769 (4) 0.29442 (12) 0.30389 (16) 0.0518 (5)
H3 0.685094 0.261048 0.299092 0.062*
O4 0.7441 (2) 0.58949 (7) 0.42948 (10) 0.0432 (3)
N4 1.3345 (3) 0.81860 (10) 0.47545 (14) 0.0470 (4)
H4A 1.4629 (19) 0.8123 (15) 0.4680 (17) 0.061 (7)*
H4B 1.258 (3) 0.7797 (10) 0.4805 (18) 0.064 (8)*
C4 0.3719 (4) 0.27030 (13) 0.27364 (17) 0.0533 (6)
H4 0.346243 0.222044 0.247253 0.064*
O5 0.7522 (2) 0.78759 (8) 0.43539 (12) 0.0517 (4)
C5 0.2049 (3) 0.31731 (12) 0.28231 (16) 0.0497 (5)
H5 0.066961 0.301904 0.263314 0.060*
O6 1.0164 (2) 0.70685 (9) 0.46759 (14) 0.0624 (5)
C6 0.2561 (3) 0.38746 (11) 0.32045 (13) 0.0394 (4)
C7 0.2444 (3) 0.50366 (11) 0.37490 (13) 0.0383 (4)
C8 0.9941 (3) 0.96341 (10) 0.38748 (13) 0.0350 (4)
C9 0.8136 (3) 1.00364 (12) 0.35338 (13) 0.0420 (4)
H9 0.682079 0.982192 0.350086 0.050*
C10 0.8389 (3) 1.07772 (13) 0.32431 (15) 0.0490 (5)
H10 0.720945 1.106402 0.300336 0.059*
C11 1.0345 (4) 1.11046 (13) 0.32983 (16) 0.0531 (5)
H11 1.044476 1.160508 0.310364 0.064*
C12 1.2147 (3) 1.06995 (12) 0.36377 (16) 0.0483 (5)
H12 1.346707 1.091225 0.368116 0.058*
C13 1.1870 (3) 0.99662 (11) 0.39057 (13) 0.0377 (4)
C14 1.2326 (3) 0.87935 (11) 0.44171 (13) 0.0372 (4)
C15 0.6703 (3) 0.65540 (10) 0.43310 (13) 0.0354 (4)
C16 0.8301 (3) 0.72137 (11) 0.44698 (14) 0.0379 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0305 (7) 0.0392 (7) 0.0574 (8) −0.0051 (5) 0.0037 (5) −0.0028 (6)
N1 0.0284 (8) 0.0363 (9) 0.0492 (8) −0.0048 (6) 0.0058 (6) −0.0030 (7)
C1 0.0356 (10) 0.0348 (10) 0.0396 (9) −0.0046 (8) 0.0071 (7) 0.0037 (7)
O2 0.0322 (7) 0.0382 (7) 0.0536 (8) −0.0047 (5) 0.0098 (5) 0.0007 (6)
N2 0.0331 (9) 0.0404 (10) 0.0844 (13) −0.0023 (8) 0.0144 (9) −0.0085 (9)
C2 0.0377 (11) 0.0428 (11) 0.0523 (11) 0.0007 (8) 0.0110 (8) 0.0039 (9)
O3 0.0292 (7) 0.0391 (8) 0.0945 (11) −0.0031 (6) 0.0131 (7) −0.0047 (8)
N3 0.0298 (8) 0.0342 (9) 0.0515 (9) −0.0049 (7) 0.0101 (6) −0.0018 (7)
C3 0.0567 (14) 0.0396 (11) 0.0626 (13) 0.0058 (10) 0.0202 (10) 0.0046 (10)
O4 0.0327 (7) 0.0323 (7) 0.0645 (8) −0.0021 (5) 0.0086 (6) −0.0027 (6)
N4 0.0360 (10) 0.0392 (10) 0.0663 (11) 0.0014 (8) 0.0102 (8) 0.0037 (8)
C4 0.0648 (15) 0.0344 (11) 0.0637 (13) −0.0072 (10) 0.0199 (11) −0.0045 (10)
O5 0.0324 (7) 0.0332 (7) 0.0900 (11) −0.0013 (6) 0.0120 (7) 0.0054 (7)
C5 0.0486 (12) 0.0430 (12) 0.0579 (12) −0.0135 (9) 0.0105 (9) −0.0027 (9)
O6 0.0291 (8) 0.0397 (9) 0.1155 (14) −0.0015 (6) 0.0047 (8) 0.0032 (8)
C6 0.0351 (10) 0.0378 (10) 0.0451 (10) −0.0019 (8) 0.0063 (7) 0.0037 (8)
C7 0.0328 (9) 0.0344 (10) 0.0477 (10) −0.0039 (7) 0.0066 (7) 0.0009 (8)
C8 0.0355 (10) 0.0337 (10) 0.0367 (8) −0.0029 (7) 0.0093 (7) −0.0032 (7)
C9 0.0353 (10) 0.0433 (11) 0.0476 (10) 0.0004 (8) 0.0082 (8) −0.0014 (9)
C10 0.0491 (12) 0.0459 (12) 0.0525 (11) 0.0074 (9) 0.0102 (9) 0.0043 (9)
C11 0.0620 (14) 0.0383 (12) 0.0616 (13) −0.0022 (10) 0.0180 (10) 0.0085 (10)
C12 0.0476 (12) 0.0418 (12) 0.0576 (12) −0.0100 (9) 0.0154 (9) 0.0013 (9)
C13 0.0361 (10) 0.0357 (10) 0.0423 (9) −0.0014 (8) 0.0098 (7) −0.0029 (8)
C14 0.0330 (10) 0.0340 (10) 0.0453 (9) −0.0050 (7) 0.0090 (7) −0.0041 (8)
C15 0.0304 (9) 0.0343 (10) 0.0420 (9) −0.0025 (7) 0.0079 (7) 0.0009 (8)
C16 0.0305 (9) 0.0336 (10) 0.0498 (10) −0.0033 (7) 0.0077 (7) 0.0007 (8)

Geometric parameters (Å, º)

O1—C6 1.397 (2) N4—H4A 0.866 (10)
O1—C7 1.349 (2) N4—H4B 0.858 (10)
N1—H1 0.876 (10) N4—C14 1.303 (3)
N1—C1 1.400 (3) C4—H4 0.9300
N1—C7 1.328 (2) C4—C5 1.390 (3)
C1—C2 1.374 (3) O5—C16 1.276 (2)
C1—C6 1.386 (3) C5—H5 0.9300
O2—C13 1.400 (2) C5—C6 1.364 (3)
O2—C14 1.357 (2) O6—C16 1.222 (2)
N2—H2A 0.865 (10) C8—C9 1.382 (3)
N2—H2B 0.857 (10) C8—C13 1.380 (3)
N2—C7 1.296 (3) C9—H9 0.9300
C2—H2 0.9300 C9—C10 1.388 (3)
C2—C3 1.385 (3) C10—H10 0.9300
O3—C15 1.234 (2) C10—C11 1.388 (3)
N3—H3A 0.877 (10) C11—H11 0.9300
N3—C8 1.391 (2) C11—C12 1.382 (3)
N3—C14 1.321 (2) C12—H12 0.9300
C3—H3 0.9300 C12—C13 1.369 (3)
C3—C4 1.392 (3) C15—C16 1.553 (3)
O4—C15 1.266 (2)
C7—O1—C6 105.93 (14) C5—C6—C1 123.77 (19)
C1—N1—H1 129 (2) N1—C7—O1 111.77 (16)
C7—N1—H1 123 (2) N2—C7—O1 120.69 (17)
C7—N1—C1 107.77 (15) N2—C7—N1 127.53 (18)
C2—C1—N1 133.15 (18) C9—C8—N3 132.26 (18)
C2—C1—C6 120.73 (18) C13—C8—N3 107.36 (16)
C6—C1—N1 106.12 (16) C13—C8—C9 120.37 (18)
C14—O2—C13 105.31 (14) C8—C9—H9 121.8
H2A—N2—H2B 122 (3) C8—C9—C10 116.46 (19)
C7—N2—H2A 122.7 (18) C10—C9—H9 121.8
C7—N2—H2B 115.0 (19) C9—C10—H10 118.9
C1—C2—H2 121.8 C9—C10—C11 122.2 (2)
C1—C2—C3 116.40 (19) C11—C10—H10 118.9
C3—C2—H2 121.8 C10—C11—H11 119.4
C8—N3—H3A 123 (2) C12—C11—C10 121.1 (2)
C14—N3—H3A 129 (2) C12—C11—H11 119.4
C14—N3—C8 107.10 (15) C11—C12—H12 122.1
C2—C3—H3 118.8 C13—C12—C11 115.9 (2)
C2—C3—C4 122.3 (2) C13—C12—H12 122.1
C4—C3—H3 118.8 C8—C13—O2 107.87 (16)
H4A—N4—H4B 119 (2) C12—C13—O2 128.21 (18)
C14—N4—H4A 120.4 (17) C12—C13—C8 123.92 (19)
C14—N4—H4B 115.1 (18) N3—C14—O2 112.34 (16)
C3—C4—H4 119.5 N4—C14—O2 119.57 (17)
C5—C4—C3 120.9 (2) N4—C14—N3 128.08 (18)
C5—C4—H4 119.5 O3—C15—O4 125.89 (17)
C4—C5—H5 122.1 O3—C15—C16 117.56 (16)
C6—C5—C4 115.8 (2) O4—C15—C16 116.55 (16)
C6—C5—H5 122.1 O5—C16—C15 115.62 (16)
C1—C6—O1 108.39 (16) O6—C16—O5 125.33 (18)
C5—C6—O1 127.84 (18) O6—C16—C15 119.06 (17)
N1—C1—C2—C3 −179.9 (2) C6—C1—C2—C3 1.4 (3)
N1—C1—C6—O1 −1.0 (2) C7—O1—C6—C1 0.03 (19)
N1—C1—C6—C5 178.36 (18) C7—O1—C6—C5 −179.3 (2)
C1—N1—C7—O1 −1.8 (2) C7—N1—C1—C2 −177.2 (2)
C1—N1—C7—N2 179.0 (2) C7—N1—C1—C6 1.7 (2)
C1—C2—C3—C4 0.9 (3) C8—N3—C14—O2 1.1 (2)
C2—C1—C6—O1 178.00 (16) C8—N3—C14—N4 179.93 (19)
C2—C1—C6—C5 −2.6 (3) C8—C9—C10—C11 −0.6 (3)
C2—C3—C4—C5 −2.0 (3) C9—C8—C13—O2 −178.45 (16)
O3—C15—C16—O5 −10.1 (3) C9—C8—C13—C12 1.8 (3)
O3—C15—C16—O6 169.97 (19) C9—C10—C11—C12 0.8 (3)
N3—C8—C9—C10 −179.46 (19) C10—C11—C12—C13 0.3 (3)
N3—C8—C13—O2 0.65 (19) C11—C12—C13—O2 178.73 (18)
N3—C8—C13—C12 −179.10 (18) C11—C12—C13—C8 −1.6 (3)
C3—C4—C5—C6 0.9 (3) C13—O2—C14—N3 −0.71 (19)
O4—C15—C16—O5 169.79 (17) C13—O2—C14—N4 −179.63 (17)
O4—C15—C16—O6 −10.2 (3) C13—C8—C9—C10 −0.6 (3)
C4—C5—C6—O1 −179.32 (18) C14—O2—C13—C8 0.00 (18)
C4—C5—C6—C1 1.4 (3) C14—O2—C13—C12 179.74 (19)
C6—O1—C7—N1 1.1 (2) C14—N3—C8—C9 177.88 (19)
C6—O1—C7—N2 −179.66 (18) C14—N3—C8—C13 −1.07 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4 0.88 (1) 1.78 (1) 2.650 (2) 176 (3)
N2—H2A···O4i 0.87 (1) 2.00 (1) 2.863 (2) 174 (3)
N2—H2B···O3 0.86 (1) 1.94 (1) 2.770 (2) 164 (2)
C2—H2···O1ii 0.93 2.65 3.522 (2) 157
N3—H3A···O5 0.88 (1) 1.71 (1) 2.577 (2) 173 (3)
N4—H4A···O5ii 0.87 (1) 2.06 (1) 2.918 (2) 172 (2)
N4—H4B···O6 0.86 (1) 2.02 (1) 2.851 (2) 163 (2)

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Funding Statement

Funding for this research was provided by: Ministry of Higher Education, Science and Innovation of the Republic of Uzbekistan.

References

  1. Ashurov, J., Karimova, G., Mukhamedov, N., Parpiev, N. A. & Ibragimov, B. (2011). Acta Cryst. E67, m432. [DOI] [PMC free article] [PubMed]
  2. Ashurov, J. M., Mukhamedov, N. S., Tashkhodzhaev, B. & Ibragimov, A. B. (2015). J. Struct. Chem. 56, 1148–1153.
  3. Calva, A. H., Velasco, A. L. P., Martínez, M., Pérez-Benítez, A., Bernès, S. & Vergara, E. G. (2011). J. Chem. Crystallogr. 41, 1461–1466.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Hwang, J. Y. & Gong, Y.-D. (2006). J. Comb. Chem. 8, 297–303. [DOI] [PubMed]
  7. Nandy, P., Nayak, A., Biswas, S. N. & Pedireddi, V. R. (2016). J. Mol. Struct. 1108, 717–726.
  8. Potashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem. 50, 4351–4373. [DOI] [PubMed]
  9. Razzoqova, S., Ibragimov, A., Torambetov, B., Kadirova, S., Holczbauer, T., Ashurov, J. & Ibragimov, B. (2023). Acta Cryst. E79, 862–866. [DOI] [PMC free article] [PubMed]
  10. Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283.
  11. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  12. Sasaki, T., Sakamoto, S. & Takamizawa, S. (2020). Cryst. Growth Des. 20, 1935–1939.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Wang, A., Ashurov, J., Ibragimov, A., Wang, R., Mouhib, H., Mukhamedov, N. & Englert, U. (2016). Acta Cryst. B72, 142–150. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624000336/bv4051sup1.cif

x-09-x240033-sup1.cif (58.7KB, cif)

Supporting information file. DOI: 10.1107/S2414314624000336/bv4051Isup2.cml

CCDC reference: 2324364

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES