Skip to main content
IUCrData logoLink to IUCrData
. 2024 Jan 9;9(Pt 1):x240013. doi: 10.1107/S2414314624000130

N-Methyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclo­pent-2-en-1-yl­idene}hydrazinecarbo­thio­amide

Adriano Bof de Oliveira a,*, Leandro Bresolin b, Johannes Beck c, Jörg Daniels c
Editor: M Bolted
PMCID: PMC10842277  PMID: 38322031

The synthesis, crystal structure and Hirshfeld analysis of cis-jasmone 4-methyl­thio­semicarbazone is reported. Two crystallographically independent mol­ecules are observed in the asymmetric unit, one of them being disordered over the carbon chain. In the crystal, the mol­ecules are linked by N—H⋯S and C—H⋯S inter­actions into independent centrosymmetric dimers.

Keywords: thio­semicarbazone, cis-jasmone, methyl­thio­semicarbazone derivative, centrosymmetric dimers, crystal structure, Hirshfeld analysis

Abstract

The equimolar and hydro­chloric acid-catalysed reaction between cis-jasmone and 4-methyl­thio­semicarbazide in ethano­lic solution yields the title compound, C13H21N3S (common name: cis-jasmone 4-methyl­thio­semicarbazone). Two mol­ecules with all atoms in general positions are present in the asymmetric unit. In one of them, the carbon chain is disordered [site occupancy ratio = 0.821 (3):0.179 (3)]. The thio­semicarbazone entities [N—N—C(=S)—N] are approximately planar, with the maximum deviation from the mean plane through the selected atoms being −0.0115 (16) Å (r.m.s.d. = 0.0078 Å) for the non-disordered mol­ecule and 0.0052 (14) Å (r.m.s.d. = 0.0031 Å) for the disordered one. The mol­ecules are not planar, since the jasmone groups have a chain with sp 3-hybridized carbon atoms and, in addition, the thio­semicarbazone fragments are attached to the respective carbon five-membered rings and the dihedral angles between them for each mol­ecule amount to 8.9 (1) and 6.3 (1)°. In the crystal, the mol­ecules are connected through pairs of N—H⋯S and C—H⋯S inter­actions into crystallographically independent centrosymmetric dimers, in which rings of graph-set motifs R 2 2(8) and R 2 1(7) are observed. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.6%), H⋯S/S⋯H (16.7%), H⋯C/C⋯H (7.5%) and H⋯N/N⋯H (4.9%) inter­actions [considering the two crystallographically independent mol­ecules and only the disordered atoms with the highest s.o.f. for the evaluation]. graphic file with name x-09-x240013-scheme1-3D1.jpg

Structure description

To the best of our knowledge, the first crystal structure of cis-jasmone thio­semicarbazone was reported recently and it was pointed out that this derivative based on non-substituted cis-jasmone shows anti­fungal activity (Orsoni et al., 2020; Jamiołkowska et al., 2022).

As part of our inter­est in thio­semicarbazones attached to natural product derivatives and on the influence of the substituent groups at the terminal N atom on the supra­molecular arrangement, we report here the synthesis, crystal structure and Hirshfeld analysis of cis-jasmone 4-methyl­thio­semicarbazone. It is important to highlight that the substit­uents at the terminal N atom are relevant not only to the crystal packing, but also to the biological properties of the thio­semicarbazone derivatives. For example, a small chemical library of 4-methyl­thio­semicarbazones has been studied for the treatment of Parkinson’s disease (Mathew et al., 2021) and for microbial growth inhibition (D’Agostino et al., 2022). In addition, for a review article on coordination compounds with 4-methyl­thio­semicarbazone derivatives including biological applications and catalytic activity, see: Monsur Showkot Hossain et al. (2023).

The asymmetric unit of the title compound comprises two mol­ecules with all atoms in general positions, with one of them showing disorder over the carbon chain [site occupancy ratio = 0.821 (3):0.179 (3)]. The mol­ecules are not planar due to the chain with sp 3-hybridized carbon atoms in the jasmone fragment and the dihedral angles between the thio­semicarbazone fragment and the respective carbon five-membered ring, which amount to 8.9 (1)° for the non-disordered mol­ecule and 6.3 (1)° for the disordered one (Fig. 1). To simplify the structure description, the non-disordered mol­ecule, with atoms C1–C13/N–N3/S1, will be designated as JMTSC-1, while the disordered one, with the atoms C14–C23A/C23B/N4–N6/S2, will be designated as JMTSC-2. To get a stable refinement, the C20, C21, C22 and C23 atoms were split into two positions and A-labelled for the higher s.o.f and B-labelled for the lower. Atom C19, which is itself not disordered, is bound to C20A and C20B, and to achieve the best orientations for the C19—H bonds, the H19A and H19B atoms were also split, into two positions. Thus, the H19A and H19B atoms have a s.o.f. of 0.821 (3) and the H19C and H19D atoms have a s.o.f. of 0.179 (3). Selected geometric parameters for the structural description of JMTSC-1 and JMTSC-2 are given in Table 1; these are in agreement with literature data (Oliveira et al., 2016; Rocha et al., 2014).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level for the two crystallographically independent mol­ecules. Disordered atoms are drawn with 40% transparency and labelled C20A, C21A, C22A, C23A, H19A and H19B [s.o.f. = 0.821 (3)] and C20B, C21B, C22B, C23B, H19C and H19D [s.o.f. = 0.179 (3)]. The remaining H atoms were omitted for clarity.

Table 1. Selected geometric parameters (Å, °) for the two crystallographically independent cis-jasmone 4-methyl­thio­semicarbazone mol­ecules, JMTSC-1 and JMTSC-2 .

Compound Atom chain Torsion angle Atom chain Torsion angle
JMTSC-1 N1/N2/C11/N3 −1.2 (3) C5/C6/C7/C8 114.6 (3)
JMTSC-1 N1/N2/C11/S1 178.55 (17) C7/C8/C9/C10 128.0 (4)
JMTSC-2 N4/N5/C25/N6 0.8 (3) C18/C19/C20A/C21A 139.9 (4)
JMTSC-2 N4/N5/C25/S2 −179.57 (16) C18/C19/C20B/C21B −117.6 (13)
      C20A/C21A/C22A/C23A 121.9 (4)
      C20B/C21B/C22B/C23B −95 (4)
         
  Fragment Max. deviation a r.m.s.d. Angle b
JMTSC-1 N1/N2/C11/S1/N3 −0.0115 (16) [N2] 0.0078  
JMTSC-1 C1—C5 ring 0.0130 (16) [C4] 0.0089 8.9 (1)
JMTSC-2 N4/N5/C25/S2/N6 0.0052 (14) [N5] 0.0031  
JMTSC-2 C14—C18 ring 0.0078 (16) [C17] 0.0054 6.3 (1)
         
  Bond lengths c N—N N—C C=S
JMTSC-1   1.392 (3) 1.351 (3) 1.680 (2)
JMTSC-2   1.394 (2) 1.357 (3) 1.678 (2)

Notes: (a) The maximum deviation from the mean plane through the selected atoms; (b) angle to previous plane; (c) bond lengths for the N1/N2/C11/S1 and N4/N5/C25/S2 entities.

For the supra­molecular arrangement and Hirshfeld analysis, for clarity only the disordered atoms with the highest s.o.f. value were considered. In the crystal, the mol­ecules are connected through pairs of N—H⋯S and C—H⋯S inter­actions into centrosymmetric dimers with graph-set motifs Inline graphic (8) and Inline graphic (7) (Table 2).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯S1i 0.81 (3) 2.80 (3) 3.591 (2) 167 (2)
C2—H5B⋯S1i 0.97 (3) 2.90 (3) 3.457 (2) 117.4 (18)
N5—H3⋯S2ii 0.84 (3) 2.75 (3) 3.585 (2) 172 (2)
C15—H18A⋯S2ii 0.93 (2) 2.98 (2) 3.472 (2) 115.0 (17)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

With the coordinates that were used for the refinement, the crystallographically independent dimers of the JMTSC-1 mol­ecules have the gravity centre located in the cell vertices (Fig. 2), and in the centre of the ac planes for the JMTSC-2 mol­ecules (Fig. 3). In addition, the mol­ecules are stacked along [100] and only weak inter­molecular inter­actions, e.g., London dispersion forces can be presumed in this direction (Fig. 4).

Figure 2.

Figure 2

Crystal structure section of the title compound for the JMTSC-1 mol­ecule, showing the hydrogen-bond inter­molecular inter­actions as dashed lines. The mol­ecules are linked into centrosymmetric dimers via pairs of N—H⋯S and C—H⋯S inter­actions with graph-set motifs Inline graphic (8) and Inline graphic (7). [Symmetry code: (i) −x, −y, −z + 2.]

Figure 3.

Figure 3

Crystal structure section of the title compound for the JMTSC-2 mol­ecule, showing the hydrogen-bonded inter­molecular inter­actions drawn as dashed lines. Disorder is not shown for clarity. The mol­ecules are linked into centrosymmetric dimers via pairs of N—H⋯S and C—H⋯S inter­actions with graph-set motifs Inline graphic (8) and Inline graphic (7). [Symmetry code: (ii) −x + 1, −y, −z + 1.]

Figure 4.

Figure 4

Selected crystal section of the title compound viewed along [010] showing the JMTSC-1 and JMTSC-2 mol­ecules stacked along [100]. Only the non-H atoms of the thio­semicarbazone entities are labelled and disorder is not shown for clarity. [Symmetry code: (iii) x + 1, y, z.]

The Hirshfeld surface analysis (Hirshfeld, 1977), the graphical representations and the two-dimensional Hirshfeld surface fingerprints (HSFP) were evaluated with the Crystal Explorer software (Wolff et al., 2012). The Hirshfeld surface analysis of the title compound, considering the JMTSC-1 and the JMTSC-2 mol­ecules, suggests that the most relevant inter­molecular inter­actions for the crystal packing are H⋯H (70.6%), H⋯S/S⋯H (16.7%), H⋯C/C⋯H (7.5%) and H⋯N/N⋯H (4.9%). A graphical representation of the Hirshfeld surface (d norm) is shown in Fig. 5 with the locations of the strongest inter­molecular contacts, i.e, the regions around the atoms H1, H3, S1 and S2, indicated in red. These atoms are those involved in the H⋯S inter­actions showed in the previous figures (Figs. 2 and 3). The contributions to the crystal cohesion are shown as two-dimensional Hirshfeld surface fingerprint plots (HSFP) with cyan dots (Fig. 6).

Figure 5.

Figure 5

Hirshfeld surface graphical representation (d norm) for the two crystallographically independent mol­ecules of the title compound. The surface is drawn with transparency, and the disorder is not shown for clarity. The regions with strongest inter­molecular inter­actions are shown in red (d norm range: −0.216 to 1.522 a.u.).

Figure 6.

Figure 6

The Hirshfeld surface two-dimensional fingerprint plot for the title compound, showing the contacts in detail (cyan dots). The major contributions of the inter­actions to the crystal cohesion amount to (a) H⋯H (70.6%), (b) H⋯S/S⋯H (16.7%), (c) H⋯C/C⋯H (7.5%) and (d) H⋯N/N⋯H (4.9%). The d i (x-axis) and the d e (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface contacts (in Å). Regarding the disorder, only the atoms with the highest s.o.f. were considered.

The crystalline supra­molecular arrangement of thio­semicarbazones depends on the template effect of the crystallization solvent, the presence of solvate mol­ecules and on the crystallization methods. In addition, the steric effect of the substituents in the R 1 R 2N—N(H)—C(=S)—NR 3 R 4 fragment is of prime importance for the crystal packing. In the title compound, two structural features lead to the building of dimers. The first one is the terminal methyl group, N(H)CH3, which decreases the possibility for N—H⋯S inter­molecular inter­actions and enhances the formation of hydrogen-bonded supra­molecular structures. On the other side of the mol­ecule, the second feature is the cis-jasmone entity, which, through steric hindrance, precludes inter­molecular inter­actions, e.g., N—H⋯S or N—H⋯N (Figs. 2 and 3); thus, four methyl-substituted thio­semicarbazone derivatives were selected for structural comparison with the title compound.

The first example is the crystal structure of benzyl­ideneacetone 4-methyl­thio­semicarbazone (Rocha et al., 2014). As a result of the steric effect of two methyl groups, one on the terminal N atom and other on the C atom attached to the thio­semicarbazone entity, dimer formation was favoured. The remaining N—H bond is involved in the N—H⋯N intra­molecular inter­action, with graph-set motif S(5). Thus, the mol­ecules are linked by N—H⋯S inter­actions, with graph-set motif Inline graphic (8), into centrosymmetric dimers. For the graphical representation of the dimeric unit, see Fig. 7(a).

Figure 7.

Figure 7

(a) Dimeric structure of the benzyl­ideneacetone 4-methyl­thio­semicarbazone compound (Rocha et al., 2014). The mol­ecules are connected via pairs of centrosymmetric N—H⋯S inter­actions, with graph-set Inline graphic (8). [Symmetry code: (i) −x + 1, −y, −z.] and (b) section of the mol­ecular arrangement of the vanilline 4-methyl­thio­semicarbazone structure (Oliveira, Beck et al., 2015). The mol­ecules are connected by pairs of centrosymmetric N—H⋯S inter­actions, with graph-set Inline graphic (8). The dimers are linked further by O—H⋯S and N—H⋯O inter­actions into a tape-like structure. Only the subunit of the supra­molecular arrangement is shown for clarity. [Symmetry codes: (i) x + 1, y-1, z;; (ii) −x − 2, −y, −z; (iii) -x-1, y +  Inline graphic , −z −  Inline graphic .]

The second selected mol­ecule is the vanilline 4-methyl­thio­semicarbazone derivative (Oliveira, Beck et al., 2015) in which the thio­semicarbazone entities are connected by N—H⋯S inter­actions, with graph-set motif Inline graphic (8), into centrosymmetric dimers. The dimers are further linked through N—H⋯S and O—H⋯S inter­actions and can be considered subunits of a hydrogen-bonded tape-like supra­molecular arrangement. This is only possible because of the O atoms in the vanilline structure, see Fig. 7(b).

A further example is 3′,4′-(methyl­enedi­oxy)aceto­phenone 4-methyl­thio­semicarbazone (Oliveira, Näther et al., 2015). As mentioned above, the terminal methyl group decreases the dimensionality of the mol­ecular arrangement and the thio­semicarbazone entities are connected by pairs of centrosymmetric N—H⋯S inter­actions, with graph-set motifs Inline graphic (8). A feature of the structural arrangement of this compound is that every thio­semicarbazone fragment bridges two other mol­ecules through N—H⋯S inter­actions in opposite directions, see Fig. 8(a).

Figure 8.

Figure 8

(a) Section of the mol­ecular arrangement of the 3′,4′-(methyl­enedi­oxy)aceto­phenone 4-methyl­thio­semicarbazone structure (Oliveira, Näther et al., 2015). The mol­ecules are connected by pairs of centrosymmetric N—H⋯S inter­actions, with graph-set Inline graphic (8), and further linked by additional N—H⋯S inter­actions into a tape-like structure. H atoms were omitted for clarity and only the subunit of the supra­molecular arrangement is shown [Symmetry codes: (i) −x + 1, −y + 1, −z + 2; (ii) x, −y +  Inline graphic , z −  Inline graphic .] and (b) section of the mol­ecular arrangement of the (–)-menthone 4-methyl­thio­semicarbazone structure (Oliveira et al., 2016). The mol­ecules are connected by pairs of N—H⋯S inter­actions, with graph-set Inline graphic (8), into non-centrosymmetric dimers and further linked by additional N—H⋯S inter­actions, forming a tape-like structure. Only the subunit of the supra­molecular arrangement is shown for clarity [Symmetry codes: (i) −x + 1, y −  Inline graphic , −z + 1; (ii) −x + 2, y +  Inline graphic , −z + 1.]

Finally, the structure of (–)-menthone 4-methyl­thio­semicarbazone (Oliveira et al., 2016) shows a non-centrosymmetric dimer, with the mol­ecules connected by pairs of N—H⋯S inter­actions, also with graph-set motif Inline graphic (8). A difference in this structure is the linking of the terminal N—H bonds between the mol­ecules through N—H⋯S inter­actions into a tape-like structure. For the dimeric subunit of the supra­molecular arrangement, see Fig. 8(b).

As observed for the title compound, pairs of N—H⋯S inter­molecular inter­actions with graph-set motif Inline graphic (8) are a remarkable feature for the crystal structure of thio­semicarbazone derivatives. The supra­molecular arrangement of the compounds depends on the structure of the substituents on the terminal N atom, as well as on the fragment attached to the first N atom.

Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of the cis-jasmone 4-methyl­thio­semicarbazone derivative was adapted from previously reported procedures (Oliveira, Beck et al., 2015; Orsoni et al., 2020). A mixture of ethano­lic solutions of cis-jasmone (8 mmol in 50 ml) and 4-methyl­thio­semicarbazide (8 mmol in 50 ml) was catalysed with HCl and refluxed for 8 h. After cooling, the precipitated product was filtered off and washed with cold ethanol. Colourless single crystals suitable for X-ray diffraction were obtained from tetra­hydro­furan by slow evaporation of the solvent at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound and one of them, JMTSC-2, shows disorder over the chain of the cis-jasmone fragment, namely the C20, C21, C22, C23, H19C and H19D atoms (Fig. 1). These atoms were split over two positions, with the carbon atoms being A-labelled for the higher s.o.f. value positions and B-labelled for the lower [site-occupancy ratio = 0.821 (3):0.179 (3)]. The atom C19 is itself not disordered, but it is bound to C20A and C20B, and to get the best orientations for the C19—H bonds, the hydrogen atoms were disordered. Thus, H19A and H19B have the positions with higher s.o.f., while H19C and H19D have the positions with the lower. The EADP command was used to constrain the displacement parameters of the disordered carbon atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C13H21N3S
M r 251.39
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 223
a, b, c (Å) 7.9583 (2), 11.2703 (2), 16.0080 (5)
α, β, γ (°) 83.0428 (18), 86.9392 (13), 76.5236 (18)
V3) 1385.51 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.28 × 0.13 × 0.12
 
Data collection
Diffractometer Enraf–Nonius FR590 Kappa CCD
Absorption correction Analytical (Alcock, 1970)
T min, T max 0.945, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 23118, 6319, 3700
R int 0.056
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.052, 0.140, 1.03
No. of reflections 6319
No. of parameters 432
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.24

Computer programs: COLLECT (Nonius, 1998), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL2018/3 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006), Crystal Explorer 3.1 (Wolff et al., 2012), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

The H atoms were treated by a mixture of constrained and independent refinement. The constrained H atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined using a riding model. For the C13H3, C23AH3, C23BH3 and C26H3 groups, the methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density, with U iso(H) = 1.5 U eq(C), and the C—H bonds were set to 0.96 Å. In an analogous manner, with U iso(H) = 1.2 U eq(C), for the C22AH2 and C22BH2 groups the C—H bond lengths were set to 0.97 Å and for the C20AH, C20BH, C21AH and C21BH, were set to 0.93 Å. In addition, the C19—H bonds were set to 0.97 Å. The remaining H atoms were refined freely.

Supplementary Material

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S2414314624000130/bt4146sup1.cif

x-09-x240013-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624000130/bt4146Isup2.hkl

x-09-x240013-Isup2.hkl (502.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314624000130/bt4146Isup3.cml

CCDC reference: 2304272

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the State of North Rhine-Westphalia, Germany. ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both of the institutions for the long-time support.

full crystallographic data

Crystal data

C13H21N3S Z = 4
Mr = 251.39 F(000) = 544
Triclinic, P1 Dx = 1.205 Mg m3
a = 7.9583 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.2703 (2) Å Cell parameters from 22795 reflections
c = 16.0080 (5) Å θ = 2.9–27.5°
α = 83.0428 (18)° µ = 0.22 mm1
β = 86.9392 (13)° T = 223 K
γ = 76.5236 (18)° Prism, colourless
V = 1385.51 (6) Å3 0.28 × 0.13 × 0.12 mm

Data collection

Enraf–Nonius FR590 Kappa CCD diffractometer 6319 independent reflections
Radiation source: sealed X-ray tube, Enraf Nonius FR590 3700 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromator Rint = 0.056
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices, κ–goniostat scans h = −10→10
Absorption correction: analytical (Alcock, 1970) k = −14→14
Tmin = 0.945, Tmax = 0.978 l = −20→20
23118 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: mixed
wR(F2) = 0.140 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.4261P] where P = (Fo2 + 2Fc2)/3
6319 reflections (Δ/σ)max = 0.001
432 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.0353 (3) 0.1677 (2) 0.75329 (13) 0.0349 (5)
C2 0.0002 (4) 0.0424 (2) 0.75249 (14) 0.0389 (5)
C3 0.0007 (4) 0.0248 (2) 0.65901 (15) 0.0417 (6)
C4 0.0398 (3) 0.1401 (2) 0.61351 (13) 0.0376 (5)
C5 0.0551 (3) 0.2205 (2) 0.66637 (13) 0.0364 (5)
C6 0.0898 (4) 0.3467 (2) 0.64395 (17) 0.0442 (6)
C7 −0.0620 (4) 0.4410 (2) 0.60830 (17) 0.0486 (6)
H7 −0.090 (3) 0.427 (3) 0.5551 (18) 0.067 (9)*
C8 −0.1493 (4) 0.5392 (3) 0.6422 (2) 0.0583 (7)
H8 −0.243 (3) 0.593 (2) 0.6108 (16) 0.055 (7)*
C9 −0.1227 (6) 0.5789 (3) 0.7249 (2) 0.0773 (10)
H9A −0.009 (5) 0.516 (4) 0.750 (2) 0.124 (14)*
H9B −0.226 (5) 0.571 (3) 0.762 (2) 0.110 (13)*
C10 −0.1051 (5) 0.7098 (3) 0.7187 (2) 0.0664 (9)
H10A −0.003 (5) 0.725 (3) 0.684 (2) 0.090 (11)*
H10B −0.095 (5) 0.735 (3) 0.771 (2) 0.103 (13)*
H10C −0.203 (5) 0.764 (3) 0.692 (2) 0.102 (12)*
C11 0.0650 (3) 0.2114 (2) 0.96479 (14) 0.0410 (6)
C12 0.0594 (4) 0.1544 (3) 0.52013 (16) 0.0502 (7)
C13 0.1722 (4) 0.3754 (3) 1.01676 (17) 0.0605 (8)
H13A 0.078825 0.394161 1.057058 0.091*
H13B 0.202888 0.449897 0.992591 0.091*
H13C 0.270256 0.321649 1.044276 0.091*
H1 0.000 (3) 0.099 (3) 0.9014 (16) 0.055 (9)*
H2 0.136 (4) 0.342 (3) 0.9011 (18) 0.062 (9)*
H4A −0.107 (3) 0.012 (2) 0.6423 (14) 0.043 (7)*
H4B 0.087 (3) −0.043 (2) 0.6446 (14) 0.041 (6)*
H5A −0.111 (4) 0.036 (2) 0.7836 (16) 0.062 (8)*
H5B 0.083 (3) −0.023 (2) 0.7831 (16) 0.055 (7)*
H6A 0.132 (3) 0.375 (2) 0.6918 (14) 0.037 (6)*
H6B 0.178 (4) 0.344 (2) 0.6043 (17) 0.058 (8)*
H11A −0.050 (4) 0.144 (3) 0.4942 (19) 0.078 (10)*
H11B 0.151 (4) 0.097 (3) 0.5017 (18) 0.070 (9)*
H11C 0.082 (4) 0.233 (3) 0.4981 (18) 0.078 (10)*
N1 0.0527 (2) 0.22380 (17) 0.81644 (11) 0.0402 (5)
N2 0.0324 (3) 0.1628 (2) 0.89595 (12) 0.0443 (5)
N3 0.1185 (3) 0.3154 (2) 0.95063 (14) 0.0503 (6)
S1 0.03760 (10) 0.14256 (6) 1.06201 (4) 0.0555 (2)
C14 0.5379 (3) 0.16267 (19) 0.71740 (13) 0.0329 (5)
C15 0.5078 (4) 0.0367 (2) 0.74221 (14) 0.0370 (5)
C16 0.5116 (4) 0.0211 (2) 0.83872 (14) 0.0412 (6)
C17 0.5457 (3) 0.1391 (2) 0.86107 (13) 0.0375 (5)
C18 0.5580 (3) 0.21881 (19) 0.79294 (13) 0.0347 (5)
C19 0.5811 (3) 0.3483 (2) 0.78856 (15) 0.0448 (6)
H19A 0.643811 0.356753 0.837003 0.054* 0.821 (3)
H19B 0.647894 0.366698 0.738193 0.054* 0.821 (3)
H19C 0.685443 0.350346 0.754772 0.054* 0.179 (3)
H19D 0.486229 0.399219 0.755824 0.054* 0.179 (3)
C20A 0.4087 (5) 0.4364 (3) 0.7871 (2) 0.0532 (8) 0.821 (3)
H20A 0.329480 0.415962 0.754005 0.064* 0.821 (3)
C21A 0.3451 (5) 0.5388 (3) 0.8238 (2) 0.0569 (9) 0.821 (3)
H21A 0.229448 0.576497 0.815022 0.068* 0.821 (3)
C22A 0.4385 (6) 0.5964 (3) 0.8758 (2) 0.0621 (10) 0.821 (3)
H22A 0.557592 0.550356 0.879680 0.075* 0.821 (3)
H22B 0.387225 0.595899 0.932190 0.075* 0.821 (3)
C23A 0.4333 (6) 0.7287 (3) 0.8386 (3) 0.0612 (11) 0.821 (3)
H23A 0.474681 0.729616 0.781112 0.092* 0.821 (3)
H23B 0.505314 0.763050 0.870457 0.092* 0.821 (3)
H23C 0.316591 0.776477 0.840756 0.092* 0.821 (3)
C20B 0.592 (2) 0.4084 (12) 0.8561 (9) 0.0532 (8) 0.179 (3)
H20B 0.682753 0.377545 0.892534 0.064* 0.179 (3)
C21B 0.479 (2) 0.5069 (15) 0.8714 (11) 0.0569 (9) 0.179 (3)
H21B 0.516842 0.521502 0.922436 0.068* 0.179 (3)
C22B 0.319 (3) 0.6156 (17) 0.8557 (11) 0.0621 (10) 0.179 (3)
H22C 0.239982 0.592198 0.820463 0.075* 0.179 (3)
H22D 0.260444 0.632136 0.909131 0.075* 0.179 (3)
C23B 0.366 (3) 0.728 (2) 0.8152 (14) 0.0612 (11) 0.179 (3)
H23D 0.363076 0.783573 0.856476 0.092* 0.179 (3)
H23E 0.284292 0.766305 0.772294 0.092* 0.179 (3)
H23F 0.479632 0.707879 0.790243 0.092* 0.179 (3)
C24 0.5633 (5) 0.1554 (3) 0.95104 (15) 0.0526 (7)
C25 0.5613 (3) 0.2125 (2) 0.49665 (13) 0.0354 (5)
C26 0.6433 (4) 0.3925 (2) 0.41676 (15) 0.0529 (7)
H26A 0.739134 0.344372 0.387775 0.079*
H26B 0.673244 0.465559 0.430318 0.079*
H26C 0.544756 0.414694 0.381308 0.079*
H3 0.508 (3) 0.089 (3) 0.5819 (16) 0.052 (8)*
H4 0.611 (3) 0.348 (2) 0.5401 (16) 0.048 (7)*
H17A 0.599 (3) −0.050 (2) 0.8611 (15) 0.053 (7)*
H17B 0.401 (3) 0.004 (2) 0.8647 (15) 0.050 (7)*
H18A 0.590 (3) −0.023 (2) 0.7182 (14) 0.044 (7)*
H18B 0.398 (3) 0.032 (2) 0.7211 (15) 0.048 (7)*
H24A 0.573 (4) 0.238 (3) 0.960 (2) 0.095 (11)*
H24B 0.459 (4) 0.138 (3) 0.9862 (18) 0.070 (9)*
H24C 0.662 (4) 0.096 (3) 0.9751 (19) 0.078 (10)*
N4 0.5513 (2) 0.22004 (16) 0.64328 (11) 0.0370 (4)
N5 0.5353 (3) 0.15779 (19) 0.57504 (11) 0.0384 (5)
N6 0.6022 (3) 0.32130 (18) 0.49376 (13) 0.0453 (5)
S2 0.54338 (9) 0.14458 (6) 0.41094 (3) 0.04489 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0328 (13) 0.0353 (12) 0.0357 (12) −0.0050 (10) −0.0016 (9) −0.0056 (9)
C2 0.0442 (15) 0.0375 (13) 0.0337 (12) −0.0094 (11) 0.0011 (11) −0.0002 (10)
C3 0.0490 (16) 0.0385 (14) 0.0375 (13) −0.0090 (12) 0.0019 (11) −0.0076 (10)
C4 0.0383 (13) 0.0390 (13) 0.0335 (12) −0.0059 (10) 0.0031 (10) −0.0035 (9)
C5 0.0373 (13) 0.0366 (13) 0.0340 (12) −0.0063 (10) −0.0003 (9) −0.0028 (9)
C6 0.0495 (16) 0.0426 (14) 0.0425 (15) −0.0161 (12) −0.0001 (13) −0.0023 (11)
C7 0.0600 (18) 0.0396 (15) 0.0477 (16) −0.0185 (13) −0.0049 (13) 0.0053 (11)
C8 0.0541 (18) 0.0418 (16) 0.075 (2) −0.0109 (13) −0.0013 (15) 0.0083 (14)
C9 0.111 (3) 0.0500 (19) 0.064 (2) −0.0098 (19) 0.033 (2) −0.0092 (15)
C10 0.078 (2) 0.0518 (19) 0.067 (2) −0.0093 (17) 0.0050 (19) −0.0087 (15)
C11 0.0462 (15) 0.0418 (14) 0.0355 (13) −0.0086 (11) −0.0052 (10) −0.0072 (10)
C12 0.063 (2) 0.0497 (17) 0.0366 (14) −0.0105 (15) 0.0044 (13) −0.0067 (12)
C13 0.083 (2) 0.0542 (17) 0.0518 (16) −0.0235 (15) −0.0136 (14) −0.0132 (13)
N1 0.0460 (12) 0.0425 (11) 0.0324 (10) −0.0114 (9) −0.0009 (8) −0.0029 (8)
N2 0.0604 (14) 0.0447 (13) 0.0321 (11) −0.0210 (11) −0.0027 (9) −0.0035 (9)
N3 0.0715 (16) 0.0471 (13) 0.0372 (13) −0.0233 (11) −0.0059 (11) −0.0036 (10)
S1 0.0842 (5) 0.0544 (4) 0.0327 (3) −0.0261 (4) −0.0033 (3) −0.0034 (3)
C14 0.0371 (13) 0.0325 (12) 0.0292 (11) −0.0085 (10) 0.0009 (9) −0.0039 (9)
C15 0.0450 (15) 0.0325 (13) 0.0335 (12) −0.0087 (11) 0.0003 (11) −0.0045 (9)
C16 0.0585 (17) 0.0331 (13) 0.0319 (12) −0.0119 (12) 0.0020 (12) −0.0014 (9)
C17 0.0463 (14) 0.0353 (12) 0.0307 (12) −0.0085 (10) 0.0020 (10) −0.0064 (9)
C18 0.0404 (13) 0.0338 (12) 0.0315 (11) −0.0110 (10) 0.0006 (9) −0.0057 (9)
C19 0.0614 (17) 0.0410 (14) 0.0381 (13) −0.0233 (12) −0.0009 (11) −0.0059 (10)
C20A 0.071 (2) 0.0345 (16) 0.0559 (19) −0.0156 (15) −0.0056 (16) −0.0041 (13)
C21A 0.054 (2) 0.0441 (19) 0.072 (2) −0.0135 (16) −0.0031 (16) −0.0019 (16)
C22A 0.089 (3) 0.052 (2) 0.049 (2) −0.024 (2) −0.004 (2) −0.0035 (15)
C23A 0.092 (4) 0.0384 (17) 0.057 (3) −0.023 (2) −0.008 (2) −0.0053 (17)
C20B 0.071 (2) 0.0345 (16) 0.0559 (19) −0.0156 (15) −0.0056 (16) −0.0041 (13)
C21B 0.054 (2) 0.0441 (19) 0.072 (2) −0.0135 (16) −0.0031 (16) −0.0019 (16)
C22B 0.089 (3) 0.052 (2) 0.049 (2) −0.024 (2) −0.004 (2) −0.0035 (15)
C23B 0.092 (4) 0.0384 (17) 0.057 (3) −0.023 (2) −0.008 (2) −0.0053 (17)
C24 0.079 (2) 0.0511 (18) 0.0284 (13) −0.0152 (16) −0.0032 (14) −0.0050 (11)
C25 0.0385 (13) 0.0341 (12) 0.0324 (12) −0.0075 (10) 0.0000 (9) −0.0013 (9)
C26 0.0690 (18) 0.0466 (15) 0.0443 (14) −0.0222 (13) 0.0037 (13) 0.0056 (11)
N4 0.0457 (12) 0.0375 (11) 0.0302 (10) −0.0129 (9) −0.0012 (8) −0.0067 (8)
N5 0.0550 (13) 0.0338 (11) 0.0287 (10) −0.0147 (10) 0.0006 (8) −0.0044 (8)
N6 0.0667 (15) 0.0414 (12) 0.0314 (11) −0.0209 (10) 0.0021 (10) −0.0027 (9)
S2 0.0637 (4) 0.0434 (4) 0.0286 (3) −0.0142 (3) −0.0008 (3) −0.0043 (2)

Geometric parameters (Å, º)

C1—N1 1.285 (3) C16—H17A 0.98 (3)
C1—C5 1.461 (3) C16—H17B 1.00 (3)
C1—C2 1.504 (3) C17—C18 1.341 (3)
C2—C3 1.533 (3) C17—C24 1.492 (3)
C2—H5A 1.00 (3) C18—C19 1.506 (3)
C2—H5B 0.97 (3) C19—C20B 1.359 (14)
C3—C4 1.500 (3) C19—C20A 1.493 (4)
C3—H4A 0.96 (2) C19—H19A 0.9700
C3—H4B 0.95 (2) C19—H19B 0.9700
C4—C5 1.342 (3) C19—H19C 0.9700
C4—C12 1.488 (3) C19—H19D 0.9700
C5—C6 1.509 (3) C20A—C21A 1.339 (5)
C6—C7 1.498 (4) C20A—H20A 0.9300
C6—H6A 0.97 (2) C21A—C22A 1.445 (5)
C6—H6B 0.92 (3) C21A—H21A 0.9300
C7—C8 1.323 (4) C22A—C23A 1.530 (5)
C7—H7 0.93 (3) C22A—H22A 0.9700
C8—C9 1.488 (5) C22A—H22B 0.9700
C8—H8 0.96 (3) C23A—H23A 0.9600
C9—C10 1.505 (5) C23A—H23B 0.9600
C9—H9A 1.07 (4) C23A—H23C 0.9600
C9—H9B 1.00 (4) C20B—C21B 1.29 (2)
C10—H10A 1.00 (4) C20B—H20B 0.9300
C10—H10B 0.93 (4) C21B—C22B 1.56 (3)
C10—H10C 0.96 (4) C21B—H21B 0.9300
C11—N3 1.329 (3) C22B—C23B 1.47 (3)
C11—N2 1.351 (3) C22B—H22C 0.9700
C11—S1 1.680 (2) C22B—H22D 0.9700
C12—H11A 1.02 (3) C23B—H23D 0.9600
C12—H11B 0.91 (3) C23B—H23E 0.9600
C12—H11C 0.96 (3) C23B—H23F 0.9600
C13—N3 1.455 (3) C24—H24A 0.97 (4)
C13—H13A 0.9600 C24—H24B 1.02 (3)
C13—H13B 0.9600 C24—H24C 0.97 (3)
C13—H13C 0.9600 C25—N6 1.335 (3)
N1—N2 1.392 (3) C25—N5 1.357 (3)
N2—H1 0.81 (3) C25—S2 1.678 (2)
N3—H2 0.83 (3) C26—N6 1.453 (3)
C14—N4 1.292 (3) C26—H26A 0.9600
C14—C18 1.463 (3) C26—H26B 0.9600
C14—C15 1.498 (3) C26—H26C 0.9600
C15—C16 1.535 (3) N4—N5 1.394 (2)
C15—H18A 0.93 (2) N5—H3 0.84 (3)
C15—H18B 0.97 (3) N6—H4 0.85 (3)
C16—C17 1.505 (3)
N1—C1—C5 122.2 (2) C17—C16—H17B 112.7 (14)
N1—C1—C2 129.2 (2) C15—C16—H17B 111.6 (14)
C5—C1—C2 108.56 (18) H17A—C16—H17B 104 (2)
C1—C2—C3 104.79 (19) C18—C17—C24 127.8 (2)
C1—C2—H5A 111.1 (15) C18—C17—C16 112.35 (19)
C3—C2—H5A 113.8 (15) C24—C17—C16 119.8 (2)
C1—C2—H5B 114.0 (16) C17—C18—C14 109.11 (19)
C3—C2—H5B 111.5 (15) C17—C18—C19 128.8 (2)
H5A—C2—H5B 102 (2) C14—C18—C19 122.04 (19)
C4—C3—C2 104.5 (2) C20B—C19—C18 125.2 (6)
C4—C3—H4A 111.7 (14) C20A—C19—C18 109.9 (2)
C2—C3—H4A 112.7 (14) C20A—C19—H19A 109.7
C4—C3—H4B 108.8 (14) C18—C19—H19A 109.7
C2—C3—H4B 112.6 (14) C20A—C19—H19B 109.7
H4A—C3—H4B 107 (2) C18—C19—H19B 109.7
C5—C4—C12 127.4 (2) H19A—C19—H19B 108.2
C5—C4—C3 112.30 (19) C20B—C19—H19C 106.0
C12—C4—C3 120.3 (2) C18—C19—H19C 106.0
C4—C5—C1 109.8 (2) C20B—C19—H19D 106.0
C4—C5—C6 127.5 (2) C18—C19—H19D 106.0
C1—C5—C6 122.7 (2) H19C—C19—H19D 106.3
C7—C6—C5 114.0 (2) C21A—C20A—C19 133.1 (3)
C7—C6—H6A 110.1 (13) C21A—C20A—H20A 113.5
C5—C6—H6A 111.0 (13) C19—C20A—H20A 113.5
C7—C6—H6B 107.0 (16) C20A—C21A—C22A 126.4 (4)
C5—C6—H6B 110.0 (17) C20A—C21A—H21A 116.8
H6A—C6—H6B 104 (2) C22A—C21A—H21A 116.8
C8—C7—C6 127.3 (3) C21A—C22A—C23A 110.4 (3)
C8—C7—H7 119.7 (17) C21A—C22A—H22A 109.6
C6—C7—H7 112.9 (17) C23A—C22A—H22A 109.6
C7—C8—C9 128.0 (3) C21A—C22A—H22B 109.6
C7—C8—H8 117.7 (16) C23A—C22A—H22B 109.6
C9—C8—H8 114.3 (15) H22A—C22A—H22B 108.1
C8—C9—C10 113.3 (3) C22A—C23A—H23A 109.5
C8—C9—H9A 106 (2) C22A—C23A—H23B 109.5
C10—C9—H9A 112 (2) H23A—C23A—H23B 109.5
C8—C9—H9B 107 (2) C22A—C23A—H23C 109.5
C10—C9—H9B 109 (2) H23A—C23A—H23C 109.5
H9A—C9—H9B 110 (3) H23B—C23A—H23C 109.5
C9—C10—H10A 113.2 (19) C21B—C20B—C19 122.2 (14)
C9—C10—H10B 113 (2) C21B—C20B—H20B 118.9
H10A—C10—H10B 107 (3) C19—C20B—H20B 118.9
C9—C10—H10C 110 (2) C20B—C21B—C22B 157.0 (17)
H10A—C10—H10C 105 (3) C20B—C21B—H21B 101.5
H10B—C10—H10C 108 (3) C22B—C21B—H21B 101.5
N3—C11—N2 116.2 (2) C23B—C22B—C21B 112.7 (18)
N3—C11—S1 122.86 (18) C23B—C22B—H22C 109.0
N2—C11—S1 120.97 (19) C21B—C22B—H22C 109.0
C4—C12—H11A 109.5 (17) C23B—C22B—H22D 109.0
C4—C12—H11B 111.9 (18) C21B—C22B—H22D 109.0
H11A—C12—H11B 108 (2) H22C—C22B—H22D 107.8
C4—C12—H11C 112.6 (18) C22B—C23B—H23D 109.5
H11A—C12—H11C 110 (2) C22B—C23B—H23E 109.5
H11B—C12—H11C 105 (3) H23D—C23B—H23E 109.5
N3—C13—H13A 109.5 C22B—C23B—H23F 109.5
N3—C13—H13B 109.5 H23D—C23B—H23F 109.5
H13A—C13—H13B 109.5 H23E—C23B—H23F 109.5
N3—C13—H13C 109.5 C17—C24—H24A 114 (2)
H13A—C13—H13C 109.5 C17—C24—H24B 110.5 (16)
H13B—C13—H13C 109.5 H24A—C24—H24B 108 (3)
C1—N1—N2 116.5 (2) C17—C24—H24C 110.6 (18)
C11—N2—N1 119.4 (2) H24A—C24—H24C 109 (3)
C11—N2—H1 119.8 (19) H24B—C24—H24C 105 (2)
N1—N2—H1 120.8 (19) N6—C25—N5 115.3 (2)
C11—N3—C13 123.6 (2) N6—C25—S2 123.71 (17)
C11—N3—H2 118 (2) N5—C25—S2 120.96 (17)
C13—N3—H2 118 (2) N6—C26—H26A 109.5
N4—C14—C18 120.8 (2) N6—C26—H26B 109.5
N4—C14—C15 129.58 (19) H26A—C26—H26B 109.5
C18—C14—C15 109.57 (18) N6—C26—H26C 109.5
C14—C15—C16 104.14 (19) H26A—C26—H26C 109.5
C14—C15—H18A 112.0 (15) H26B—C26—H26C 109.5
C16—C15—H18A 112.9 (14) C14—N4—N5 116.71 (18)
C14—C15—H18B 109.4 (14) C25—N5—N4 117.8 (2)
C16—C15—H18B 112.9 (14) C25—N5—H3 120.8 (17)
H18A—C15—H18B 106 (2) N4—N5—H3 121.4 (17)
C17—C16—C15 104.81 (19) C25—N6—C26 124.3 (2)
C17—C16—H17A 111.6 (15) C25—N6—H4 117.6 (17)
C15—C16—H17A 112.8 (14) C26—N6—H4 118.0 (18)
N1—C1—C2—C3 −177.8 (2) C15—C16—C17—C18 1.3 (3)
C5—C1—C2—C3 0.0 (3) C15—C16—C17—C24 −178.2 (2)
C1—C2—C3—C4 1.2 (3) C24—C17—C18—C14 178.0 (2)
C2—C3—C4—C5 −2.2 (3) C16—C17—C18—C14 −1.4 (3)
C2—C3—C4—C12 177.1 (2) C24—C17—C18—C19 −4.4 (4)
C12—C4—C5—C1 −176.9 (2) C16—C17—C18—C19 176.2 (2)
C3—C4—C5—C1 2.3 (3) N4—C14—C18—C17 −177.4 (2)
C12—C4—C5—C6 2.3 (4) C15—C14—C18—C17 0.9 (3)
C3—C4—C5—C6 −178.5 (2) N4—C14—C18—C19 4.8 (3)
N1—C1—C5—C4 176.6 (2) C15—C14—C18—C19 −176.9 (2)
C2—C1—C5—C4 −1.4 (3) C17—C18—C19—C20B −0.8 (9)
N1—C1—C5—C6 −2.7 (3) C14—C18—C19—C20B 176.5 (9)
C2—C1—C5—C6 179.3 (2) C17—C18—C19—C20A −91.4 (3)
C4—C5—C6—C7 73.9 (3) C14—C18—C19—C20A 85.9 (3)
C1—C5—C6—C7 −107.0 (3) C18—C19—C20A—C21A 139.9 (4)
C5—C6—C7—C8 114.6 (3) C19—C20A—C21A—C22A 2.8 (6)
C6—C7—C8—C9 −2.1 (5) C20A—C21A—C22A—C23A 121.9 (4)
C7—C8—C9—C10 128.0 (4) C18—C19—C20B—C21B −117.6 (13)
C5—C1—N1—N2 −179.33 (19) C19—C20B—C21B—C22B −4 (5)
C2—C1—N1—N2 −1.8 (4) C20B—C21B—C22B—C23B −95 (4)
N3—C11—N2—N1 −1.2 (3) C18—C14—N4—N5 178.16 (19)
S1—C11—N2—N1 178.55 (17) C15—C14—N4—N5 0.2 (4)
C1—N1—N2—C11 173.8 (2) N6—C25—N5—N4 0.8 (3)
N2—C11—N3—C13 −175.1 (2) S2—C25—N5—N4 −179.57 (16)
S1—C11—N3—C13 5.1 (4) C14—N4—N5—C25 −175.3 (2)
N4—C14—C15—C16 178.1 (2) N5—C25—N6—C26 176.9 (2)
C18—C14—C15—C16 −0.1 (3) S2—C25—N6—C26 −2.7 (4)
C14—C15—C16—C17 −0.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1···S1i 0.81 (3) 2.80 (3) 3.591 (2) 167 (2)
C2—H5B···S1i 0.97 (3) 2.90 (3) 3.457 (2) 117.4 (18)
N5—H3···S2ii 0.84 (3) 2.75 (3) 3.585 (2) 172 (2)
C15—H18A···S2ii 0.93 (2) 2.98 (2) 3.472 (2) 115.0 (17)

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y, −z+1.

Funding Statement

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

References

  1. Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  3. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  4. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. D’Agostino, I., Mathew, G. E., Angelini, P., Venanzoni, R., Angeles Flores, G., Angeli, A., Carradori, S., Marinacci, B., Menghini, L., Abdelgawad, M. A., Ghoneim, M. M., Mathew, B. & Supuran, C. T. (2022). J. Enzyme Inhib. Med. Chem. 37, 986–993. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  8. Jamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. & Grzęda, E. (2022). Agronomy 12, 116.
  9. Mathew, G. E., Oh, J. M., Mohan, K., Tengli, A., Mathew, B. & Kim, H. (2021). J. Biomol. Struct. Dyn. 39, 4786–4794. [DOI] [PubMed]
  10. Monsur Showkot Hossain, A., Méndez-Arriaga, J. M., Gómez-Ruiz, S., Xie, J., Gregory, D. H., Akitsu, T., Ibragimov, A. B., Sun, B. & Xia, C. (2023). Polyhedron, 244, 116576.
  11. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  12. Oliveira, A. B. de, Beck, J., Daniels, J. & Farias, R. L. (2016). IUCrData, 1, x160459.
  13. Oliveira, A. B. de, Beck, J., Daniels, J. & Feitosa, B. R. S. (2015). X-ray Struct. Anal. Online, 31, 5–6.
  14. Oliveira, A. B. de, Näther, C., Jess, I., Farias, R. L. de & Ribeiro, I. A. (2015). Acta Cryst. E71, o35–o36. [DOI] [PMC free article] [PubMed]
  15. Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681. [DOI] [PMC free article] [PubMed]
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Rocha, F. V., Godoy Netto, A. V. de, Beck, J., Daniels, J. & Oliveira, A. B. de (2014). Acta Cryst. E70, o800.
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S2414314624000130/bt4146sup1.cif

x-09-x240013-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624000130/bt4146Isup2.hkl

x-09-x240013-Isup2.hkl (502.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314624000130/bt4146Isup3.cml

CCDC reference: 2304272

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES