Skip to main content
IUCrData logoLink to IUCrData
. 2024 Jan 19;9(Pt 1):x240040. doi: 10.1107/S2414314624000403

Synthesis and structure of trans-bis­(4-amino-3-nitro­benzoato-κO)bis­(4-amino-3-nitro­benzoic acid-κO)di­aqua­manganese(II) dihydrate

Feruza S Narmanova a, Khayit Kh Turaev a, Aziz B Ibragimov b, Jamshid M Ashurov c,*
Editor: R J Butcherd
PMCID: PMC10842279  PMID: 38322028

The reaction of 4-amino 3-nitro­benzoic acid and manganese dichloride tetra­hydrate in an ethanol–water mixture yielded the title complex[Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O. In the crystal, mol­ecules are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds.

Keywords: 4-amino 3-nitro­benzoic acid, MnII , crystal structure, hydrogen bond

Abstract

The manganese title complex, [Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O, is one of the first 4-amino 3-nitro­benzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex mol­ecules located on inversion centers. Four 4 A3NBA ligand mol­ecules are monodentately coordinated by the Mn2+ ion through the carb­oxy­lic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water mol­ecules, giving rise to a distorted octa­hedron, and two water mol­ecules are in the outer coordination sphere. There are two intra­molecular hydrogen bonds in the complex mol­ecule. The first is of the common N—H⋯O=N type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxyl­ate groups. In the crystal, an intricate system of inter­molecular hydrogen bonds links the complex mol­ecules into a three-dimensional-network. graphic file with name x-09-x240040-scheme1-3D1.jpg

Structure description

The mol­ecular structure of the title complex is shown in Fig. 1. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex mol­ecules located on inversion centers. Four 4-amino 3-nitro­benzoic acid (4 A3NBA) ligands are monodentately coordinated by the Mn2+ ion through the oxygen atoms of carb­oxy­lic groups while two other positions of the inner coordination sphere are occupied by water mol­ecules. The outer coordination sphere contains two water mol­ecules, i.e. the complex is crystal hydrate. The length of the Mn—O1 bond is 2.1575 (12) Å while Mn—O5 is 2.1600 (13) Å and Mn—O1W = 2.1630 (14) Å and bond angles are in the range 84.29 (5) to 95.71 (5)°. The geometry of the manganese atom is therefore a slightly distorted octa­hedron. The carboxyl­ate groups C7,O2,O1 and C14,O6,O5 are practically coplanar with the aromatic rings to which they are attached, forming dihedral angles of 4.1 (1) and 11.9 (1)°, respectively. The analogous angles for nitro groups N1,O3,O4 and N3,O7,O8 are 2.82 (9) and 8.6 (1)°. Thus in the ligand with the C8–C13 aromatic ring, the functional groups are more inclined relatively to the benzene ring.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. Symmetry code: (i) 1 − x, 1 − y, −z.

There are two intra­molecular hydrogen bonds in the complex mol­ecule (Table 1). The first bond is of the usual N—H⋯O=N type, closing a six-membered ring with an Inline graphic (6) graph-set motif (Etter 1990; Ibragimov et al., 2017; Ruzmetov et al., 2022). The second is a rarely occurring very strong hydrogen bond closing a nine-membered ring where a common proton, H20, is shared by two uncoordinated oxygen atoms O2 and O6 of neighboring carboxyl­ate groups. The atom H20, situated between the two oxygen atoms, is located closer to atom O2 at a distance of 1.270 (2) Å [and 1.198 (2) Å from O6]. Despite this, it is impossible to indicate which of the four carb­oxy­lic groups present are deprotonated. The total negative charge of the carb­oxy­lic groups is 2 and it compensates the +2 charge of the Mn2+ ion.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.83 (2) 2.06 (2) 2.8850 (19) 176 (2)
O1W—H1WA⋯O4i 0.83 (2) 2.55 (2) 3.1418 (19) 130 (2)
O1W—H1WA⋯N1i 0.83 (2) 2.63 (2) 3.4029 (19) 157 (2)
O1W—H1WB⋯O2W 0.81 (2) 1.98 (2) 2.784 (2) 170 (2)
O2—H2O⋯O5 1.27 (4) 2.57 (4) 3.448 (2) 124 (2)
O6—H2O⋯O2 1.20 (4) 1.27 (4) 2.4541 (18) 168 (4)
N2—H2A⋯O6ii 0.86 2.19 3.0160 (19) 162
N2—H2B⋯O4 0.85 1.99 2.629 (2) 131
N4—H4A⋯O8 0.87 2.03 2.648 (2) 128
N4—H4B⋯O2W i 0.87 2.16 3.021 (2) 173
C5—H5⋯O2ii 0.93 2.57 3.489 (2) 170
C9—H9⋯N2iii 0.93 2.66 3.544 (2) 160
C12—H12⋯O8iv 0.93 2.42 3.178 (2) 138
O2W—H2WA⋯O7v 0.86 2.14 2.995 (2) 173
O2W—H2WB⋯O1W vi 0.85 2.39 3.127 (2) 145
O2W—H2WB⋯O5vii 0.85 2.65 3.341 (2) 139

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic .

There are 17 proton-acceptor oxygen atoms, 4 proton-donor nitro­gen atoms and 2 water mol­ecules in the title complex. These atoms are involved in a complex system of inter­molecular hydrogen bonds (Table 1). Moreover, three weak C—H⋯O hydrogen bonds are also observed in the structure (Table 1, Fig. 2). Together these hydrogen bonds link the complex mol­ecules into a three-dimensional network (Fig. 2.).

Figure 2.

Figure 2

The crystal packing viewed along [100] showing the O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (dashed red lines) in the crystal structure.

Synthesis and crystallization

All reagents and solvents were purchased from Sigma-Aldrich (Darmstadt, Germany) and they were used as received. MnCl2·H2O (0.198 g, 1.0 mmol) was dissolved in a small amount of water. 4-Amino 3-nitro­benzoic acid (0.364 g, 2 mmol) was dissolved in a mixed solvent of 3 ml of absolute alcohol and 3 ml of distilled water. After dropwise addition of the 4 A3NBA solution to the manganese salt solution, the resultant solution was stirred for 2 h with a magnetic stirrer at 55°C. The solution was allowed to stand at 30°C in a beaker with small holes in the cover for evaporation. After about eight days, block-shaped single crystals ofthe title compound appeared. Analysis calculated: C28H30MnN8O20: C, 39.40%; H, 3.54; N, 13.13%. Found: C, 39.32%; H, 3.47%; N, 13.08%.

Refinement

Crystal data, data collection and structure refinement details for the structure of the synthesized compound are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Mn(C7H5MnN2O4)2(C7H6MnN2O4)2(H2O)2]·2H2O
M r 853.54
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.0419 (1), 19.2513 (3), 12.7175 (2)
β (°) 100.513 (2)
V3) 1695.12 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.08
Crystal size (mm) 0.28 × 0.22 × 0.14
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
T min, T max 0.523, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3291, 3291, 2966
R int 0.037
(sin θ/λ)max−1) 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.097, 1.06
No. of reflections 3291
No. of parameters 269
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.44

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624000403/bv4050sup1.cif

x-09-x240040-sup1.cif (122.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624000403/bv4050Isup2.hkl

x-09-x240040-Isup2.hkl (262.9KB, hkl)

CCDC reference: 2324651

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Mn(C7H5MnN2O4)2(C7H6MnN2O4)2(H2O)2]·2H2O F(000) = 878
Mr = 853.54 Dx = 1.672 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 7.0419 (1) Å Cell parameters from 11377 reflections
b = 19.2513 (3) Å θ = 2.3–71.4°
c = 12.7175 (2) Å µ = 4.08 mm1
β = 100.513 (2)° T = 293 K
V = 1695.12 (5) Å3 Block, light pink
Z = 2 0.28 × 0.22 × 0.14 mm

Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 3291 independent reflections
Radiation source: micro-focus sealed X-ray tube 2966 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.037
ω scans θmax = 71.5°, θmin = 4.2°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) h = −8→8
Tmin = 0.523, Tmax = 1.000 k = −23→22
3291 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: mixed
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.2227P] where P = (Fo2 + 2Fc2)/3
3291 reflections (Δ/σ)max < 0.001
269 parameters Δρmax = 0.27 e Å3
3 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The hydrogen atoms of water molecules and amino groups were located in difference-Fourier maps and refined freely. The H atoms of the benzene ring were calculated geometrically with C—H = 0.93 A° and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.500000 0.500000 0.000000 0.02947 (13)
O1 0.4809 (2) 0.39058 (6) 0.03322 (11) 0.0489 (4)
O1W 0.8075 (2) 0.50832 (7) 0.05836 (12) 0.0464 (3)
H1WA 0.848 (4) 0.5418 (9) 0.0964 (19) 0.070*
H1WB 0.879 (4) 0.4760 (9) 0.078 (2) 0.070*
O2 0.6022 (2) 0.36153 (7) 0.20147 (10) 0.0515 (4)
H2O 0.619 (6) 0.422 (2) 0.242 (3) 0.155 (15)*
O3 0.5562 (2) 0.13009 (7) 0.31842 (10) 0.0560 (4)
O4 0.4652 (2) 0.04466 (7) 0.21207 (11) 0.0545 (4)
O5 0.4355 (2) 0.52907 (8) 0.15374 (10) 0.0457 (3)
O6 0.6122 (2) 0.47449 (7) 0.29174 (10) 0.0483 (4)
O7 0.7667 (2) 0.59190 (8) 0.62838 (11) 0.0590 (4)
O8 0.6914 (2) 0.69874 (8) 0.65088 (11) 0.0612 (4)
N1 0.4964 (2) 0.10712 (7) 0.22733 (11) 0.0363 (3)
N2 0.3472 (2) 0.06488 (7) 0.00606 (12) 0.0431 (4)
H2A 0.302809 0.057204 −0.060340 0.052*
H2B 0.365807 0.034904 0.056060 0.052*
N3 0.6948 (2) 0.64740 (8) 0.59270 (12) 0.0410 (4)
N4 0.5654 (3) 0.77954 (8) 0.48424 (14) 0.0481 (4)
H4A 0.587279 0.778868 0.553450 0.058*
H4B 0.516269 0.814368 0.445160 0.058*
C1 0.4755 (2) 0.27328 (8) 0.08203 (13) 0.0297 (3)
C2 0.5071 (2) 0.22409 (8) 0.16193 (13) 0.0294 (3)
H2 0.557893 0.237429 0.231674 0.035*
C3 0.4636 (2) 0.15439 (8) 0.13907 (12) 0.0291 (3)
C4 0.3884 (2) 0.13131 (8) 0.03426 (12) 0.0298 (3)
C5 0.3551 (3) 0.18352 (9) −0.04571 (13) 0.0351 (4)
H5 0.303735 0.170966 −0.115751 0.042*
C6 0.3963 (2) 0.25158 (9) −0.02257 (13) 0.0333 (4)
H6 0.371609 0.284412 −0.076992 0.040*
C7 0.5212 (2) 0.34754 (8) 0.10562 (13) 0.0335 (4)
C8 0.5352 (2) 0.59261 (9) 0.31259 (13) 0.0330 (4)
C9 0.6043 (2) 0.59219 (9) 0.42108 (13) 0.0338 (4)
H9 0.643858 0.550494 0.455105 0.041*
C10 0.6160 (2) 0.65326 (9) 0.48065 (13) 0.0333 (4)
C11 0.5581 (2) 0.71818 (9) 0.43305 (15) 0.0358 (4)
C12 0.4899 (3) 0.71660 (9) 0.32115 (15) 0.0409 (4)
H12 0.453293 0.758055 0.285614 0.049*
C13 0.4760 (3) 0.65655 (10) 0.26390 (14) 0.0384 (4)
H13 0.426366 0.657803 0.190964 0.046*
C14 0.5253 (3) 0.52789 (9) 0.24730 (13) 0.0352 (4)
O2W 1.0872 (2) 0.40951 (8) 0.13520 (11) 0.0542 (4)
H2WA 1.119577 0.406931 0.203299 0.081*
H2WB 1.161577 0.433931 0.103999 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0436 (2) 0.02138 (19) 0.01972 (19) −0.00214 (14) −0.00417 (15) 0.00137 (12)
O1 0.0807 (10) 0.0235 (6) 0.0358 (7) −0.0052 (6) −0.0070 (6) 0.0050 (5)
O1W 0.0456 (7) 0.0419 (8) 0.0444 (8) 0.0030 (6) −0.0114 (6) −0.0121 (6)
O2 0.0808 (10) 0.0297 (7) 0.0340 (7) −0.0014 (6) −0.0157 (6) −0.0019 (5)
O3 0.0926 (11) 0.0393 (7) 0.0283 (7) −0.0025 (7) −0.0099 (7) 0.0063 (5)
O4 0.0851 (10) 0.0251 (6) 0.0454 (8) −0.0059 (6) −0.0086 (7) 0.0091 (5)
O5 0.0584 (8) 0.0528 (8) 0.0221 (6) 0.0066 (6) −0.0030 (5) −0.0078 (5)
O6 0.0748 (9) 0.0322 (7) 0.0303 (7) 0.0027 (6) −0.0106 (6) −0.0053 (5)
O7 0.0864 (11) 0.0519 (9) 0.0318 (7) 0.0122 (8) −0.0079 (7) 0.0002 (6)
O8 0.0824 (11) 0.0605 (9) 0.0366 (8) 0.0046 (8) −0.0006 (7) −0.0225 (7)
N1 0.0459 (8) 0.0285 (7) 0.0305 (7) 0.0019 (6) −0.0038 (6) 0.0066 (5)
N2 0.0643 (10) 0.0265 (7) 0.0336 (8) −0.0027 (7) −0.0044 (7) −0.0028 (6)
N3 0.0479 (9) 0.0443 (9) 0.0287 (7) −0.0013 (7) 0.0012 (6) −0.0084 (6)
N4 0.0589 (10) 0.0334 (8) 0.0510 (10) 0.0015 (7) 0.0072 (8) −0.0093 (7)
C1 0.0353 (8) 0.0235 (8) 0.0280 (8) 0.0022 (6) 0.0001 (6) 0.0019 (6)
C2 0.0360 (8) 0.0249 (8) 0.0247 (7) 0.0012 (6) −0.0010 (6) −0.0008 (6)
C3 0.0347 (8) 0.0242 (8) 0.0267 (8) 0.0035 (6) 0.0011 (6) 0.0042 (6)
C4 0.0333 (8) 0.0243 (7) 0.0299 (8) 0.0013 (6) 0.0003 (6) −0.0020 (6)
C5 0.0468 (9) 0.0304 (9) 0.0244 (8) −0.0012 (7) −0.0036 (7) −0.0015 (6)
C6 0.0422 (9) 0.0282 (8) 0.0268 (8) 0.0010 (7) −0.0013 (7) 0.0045 (6)
C7 0.0421 (9) 0.0248 (8) 0.0307 (8) 0.0003 (7) −0.0012 (7) 0.0030 (6)
C8 0.0391 (9) 0.0335 (9) 0.0252 (8) −0.0017 (7) 0.0030 (6) −0.0033 (6)
C9 0.0394 (9) 0.0312 (8) 0.0286 (8) 0.0011 (7) 0.0004 (7) −0.0015 (6)
C10 0.0362 (8) 0.0354 (9) 0.0264 (8) −0.0002 (7) 0.0012 (7) −0.0027 (6)
C11 0.0331 (8) 0.0337 (9) 0.0402 (9) −0.0015 (7) 0.0058 (7) −0.0043 (7)
C12 0.0484 (10) 0.0324 (9) 0.0401 (10) 0.0039 (8) 0.0032 (8) 0.0050 (7)
C13 0.0437 (9) 0.0418 (10) 0.0271 (8) 0.0016 (8) −0.0005 (7) 0.0029 (7)
C14 0.0432 (9) 0.0372 (9) 0.0237 (8) −0.0032 (7) 0.0021 (7) −0.0037 (7)
O2W 0.0659 (9) 0.0496 (8) 0.0448 (8) 0.0015 (7) 0.0040 (7) 0.0036 (6)

Geometric parameters (Å, º)

Mn1—O1i 2.1575 (12) N4—H4A 0.8655
Mn1—O1 2.1575 (12) N4—H4B 0.8680
Mn1—O5i 2.1600 (13) C1—C2 1.377 (2)
Mn1—O5 2.1600 (13) C1—C6 1.409 (2)
Mn1—O1W 2.1630 (14) C1—C7 1.484 (2)
Mn1—O1Wi 2.1630 (14) C2—C3 1.395 (2)
O1—C7 1.233 (2) C2—H2 0.9300
O1W—H1WA 0.827 (16) C3—C4 1.413 (2)
O1W—H1WB 0.813 (16) C4—C5 1.419 (2)
O2—C7 1.277 (2) C5—C6 1.363 (2)
O2—H2O 1.27 (4) C5—H5 0.9300
O3—N1 1.2398 (19) C6—H6 0.9300
O4—N1 1.2314 (19) C8—C9 1.377 (2)
O5—C14 1.242 (2) C8—C13 1.406 (2)
O6—C14 1.275 (2) C8—C14 1.492 (2)
O6—H2O 1.20 (4) C9—C10 1.393 (2)
O7—N3 1.233 (2) C9—H9 0.9300
O8—N3 1.237 (2) C10—C11 1.416 (2)
N1—C3 1.4307 (19) C11—C12 1.417 (3)
N2—C4 1.345 (2) C12—C13 1.360 (3)
N2—H2A 0.8581 C12—H12 0.9300
N2—H2B 0.8510 C13—H13 0.9300
N3—C10 1.436 (2) O2W—H2WA 0.8558
N4—C11 1.345 (2) O2W—H2WB 0.8537
O1i—Mn1—O1 180.0 C3—C2—H2 119.7
O1i—Mn1—O5i 92.57 (6) C2—C3—C4 121.96 (14)
O1—Mn1—O5i 87.43 (6) C2—C3—N1 116.77 (14)
O1i—Mn1—O5 87.43 (6) C4—C3—N1 121.27 (14)
O1—Mn1—O5 92.57 (6) N2—C4—C3 125.16 (15)
O5i—Mn1—O5 180.0 N2—C4—C5 118.87 (14)
O1i—Mn1—O1W 84.29 (5) C3—C4—C5 115.97 (14)
O1—Mn1—O1W 95.71 (5) C6—C5—C4 121.70 (15)
O5i—Mn1—O1W 88.12 (5) C6—C5—H5 119.1
O5—Mn1—O1W 91.88 (5) C4—C5—H5 119.1
O1i—Mn1—O1Wi 95.71 (5) C5—C6—C1 121.42 (15)
O1—Mn1—O1Wi 84.29 (5) C5—C6—H6 119.3
O5i—Mn1—O1Wi 91.88 (5) C1—C6—H6 119.3
O5—Mn1—O1Wi 88.12 (5) O1—C7—O2 124.97 (16)
O1W—Mn1—O1Wi 180.0 O1—C7—C1 118.99 (15)
C7—O1—Mn1 142.04 (12) O2—C7—C1 116.03 (14)
Mn1—O1W—H1WA 118.6 (17) C9—C8—C13 117.94 (15)
Mn1—O1W—H1WB 125.3 (18) C9—C8—C14 121.66 (15)
H1WA—O1W—H1WB 106 (2) C13—C8—C14 120.40 (15)
C7—O2—H2O 124.8 (18) C8—C9—C10 121.00 (16)
C14—O5—Mn1 135.11 (13) C8—C9—H9 119.5
C14—O6—H2O 120.4 (19) C10—C9—H9 119.5
O4—N1—O3 121.07 (14) C9—C10—C11 121.91 (15)
O4—N1—C3 119.93 (14) C9—C10—N3 116.57 (15)
O3—N1—C3 119.00 (14) C11—C10—N3 121.50 (15)
C4—N2—H2A 116.6 N4—C11—C10 125.85 (17)
C4—N2—H2B 116.7 N4—C11—C12 118.74 (17)
H2A—N2—H2B 126.7 C10—C11—C12 115.41 (15)
O7—N3—O8 121.58 (15) C13—C12—C11 122.26 (16)
O7—N3—C10 119.44 (14) C13—C12—H12 118.9
O8—N3—C10 118.98 (16) C11—C12—H12 118.9
C11—N4—H4A 117.6 C12—C13—C8 121.45 (16)
C11—N4—H4B 115.2 C12—C13—H13 119.3
H4A—N4—H4B 124.9 C8—C13—H13 119.3
C2—C1—C6 118.40 (14) O5—C14—O6 123.99 (16)
C2—C1—C7 120.90 (14) O5—C14—C8 118.82 (16)
C6—C1—C7 120.70 (14) O6—C14—C8 117.19 (15)
C1—C2—C3 120.53 (15) H2WA—O2W—H2WB 115.4
C1—C2—H2 119.7
C6—C1—C2—C3 0.7 (2) C13—C8—C9—C10 −0.2 (3)
C7—C1—C2—C3 179.94 (15) C14—C8—C9—C10 178.81 (16)
C1—C2—C3—C4 0.8 (3) C8—C9—C10—C11 −0.1 (3)
C1—C2—C3—N1 −178.46 (15) C8—C9—C10—N3 −178.47 (16)
O4—N1—C3—C2 −178.27 (16) O7—N3—C10—C9 7.9 (3)
O3—N1—C3—C2 1.7 (2) O8—N3—C10—C9 −173.23 (17)
O4—N1—C3—C4 2.5 (2) O7—N3—C10—C11 −170.52 (17)
O3—N1—C3—C4 −177.55 (16) O8—N3—C10—C11 8.4 (3)
C2—C3—C4—N2 178.46 (16) C9—C10—C11—N4 −179.64 (18)
N1—C3—C4—N2 −2.3 (3) N3—C10—C11—N4 −1.3 (3)
C2—C3—C4—C5 −1.7 (2) C9—C10—C11—C12 −0.6 (3)
N1—C3—C4—C5 177.57 (15) N3—C10—C11—C12 177.70 (16)
N2—C4—C5—C6 −179.08 (17) N4—C11—C12—C13 −179.19 (18)
C3—C4—C5—C6 1.0 (3) C10—C11—C12—C13 1.7 (3)
C4—C5—C6—C1 0.5 (3) C11—C12—C13—C8 −2.1 (3)
C2—C1—C6—C5 −1.4 (3) C9—C8—C13—C12 1.3 (3)
C7—C1—C6—C5 179.42 (17) C14—C8—C13—C12 −177.73 (17)
Mn1—O1—C7—O2 0.8 (3) Mn1—O5—C14—O6 −51.2 (3)
Mn1—O1—C7—C1 −178.67 (15) Mn1—O5—C14—C8 128.20 (16)
C2—C1—C7—O1 −175.97 (17) C9—C8—C14—O5 169.25 (17)
C6—C1—C7—O1 3.2 (3) C13—C8—C14—O5 −11.7 (3)
C2—C1—C7—O2 4.5 (3) C9—C8—C14—O6 −11.3 (3)
C6—C1—C7—O2 −176.31 (16) C13—C8—C14—O6 167.69 (17)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O3ii 0.83 (2) 2.06 (2) 2.8850 (19) 176 (2)
O1W—H1WA···O4ii 0.83 (2) 2.55 (2) 3.1418 (19) 130 (2)
O1W—H1WA···N1ii 0.83 (2) 2.63 (2) 3.4029 (19) 157 (2)
O1W—H1WB···O2W 0.81 (2) 1.98 (2) 2.784 (2) 170 (2)
O2—H2O···O5 1.27 (4) 2.57 (4) 3.448 (2) 124 (2)
O6—H2O···O2 1.20 (4) 1.27 (4) 2.4541 (18) 168 (4)
N2—H2A···O6iii 0.86 2.19 3.0160 (19) 162
N2—H2B···O4 0.85 1.99 2.629 (2) 131
N4—H4A···O8 0.87 2.03 2.648 (2) 128
N4—H4B···O2Wii 0.87 2.16 3.021 (2) 173
C5—H5···O2iii 0.93 2.57 3.489 (2) 170
C9—H9···N2iv 0.93 2.66 3.544 (2) 160
C12—H12···O8v 0.93 2.42 3.178 (2) 138
O2W—H2WA···O7vi 0.86 2.14 2.995 (2) 173
O2W—H2WB···O1Wvii 0.85 2.39 3.127 (2) 145
O2W—H2WB···O5viii 0.85 2.65 3.341 (2) 139

Symmetry codes: (ii) −x+3/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) x+1/2, −y+1/2, z+1/2; (v) x−1/2, −y+3/2, z−1/2; (vi) −x+2, −y+1, −z+1; (vii) −x+2, −y+1, −z; (viii) x+1, y, z.

Funding Statement

The authors gratefully acknowledge the Ministry of Higher Education, Science and Innovation for financial support (project No. F3–20200929348) and would also like to thank the Uzbekistan government for direct financial support of this research.

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  3. Ibragimov, A. B., Ashurov, Z. M. & Zakirov, B. S. (2017). J. Struct. Chem. 58, 588–590.
  4. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  5. Ruzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022). Acta Cryst. E78, 660–664. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  7. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624000403/bv4050sup1.cif

x-09-x240040-sup1.cif (122.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624000403/bv4050Isup2.hkl

x-09-x240040-Isup2.hkl (262.9KB, hkl)

CCDC reference: 2324651

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES