Skip to main content
IUCrData logoLink to IUCrData
. 2024 Jan 12;9(Pt 1):x240037. doi: 10.1107/S2414314624000373

Di­chlorido­(4,7-dimeth­oxy-1,10-phenanthroline-κ2 N,N′)zinc(II)

Nalani P Rose a, Hadi D Arman b, Rafael A Adrian a,*
Editor: M Weilc
PMCID: PMC10842281  PMID: 38322030

In the crystal structure of the title compound, the central zinc(II) metal atom is surrounded by two N atoms of a bidentate 4,7-meth­oxy-1,10-phenanthroline ligand and two chlorido ligands in a distorted tetra­hedral coordination environment.

Keywords: crystal structure; zinc; 4,7-dimeth­oxy-1,10-phenanthroline; coordinating chloride ions; distorted tetra­hedral coordination environment; metal complex; τ4 descriptor

Abstract

In the title complex, [ZnCl2(C14H12N2O2)], the ZnII atom is located on a twofold rotation axis and is fourfold coordinated by two chlorido ligands and a bidentate 4,7-meth­oxy-1,10-phenanthroline ligand in a distorted tetra­hedral environment. Weak π–π stacking inter­actions between adjacent 4,7-dimeth­oxy-1,10-phenanthroline rings [centroid-to-centroid distances = 3.5969 (11) and 3.7738 (11) Å] contribute to the alignment of the complexes in layers parallel to ( Inline graphic 01). graphic file with name x-09-x240037-scheme1-3D1.jpg

Structure description

Over the last five years, metal complexes containing 4,7-dimeth­oxy-1,10-phenanthroline have garnered significant attention due to their catalytic activity (EL-Atawy et al., 2018; Liu et al., 2020) and potential as anti­tumor agents (Khoury et al., 2022). Likewise, oxidovanadium(IV) complexes incorporating 4,7-dimeth­oxy-1,10-phenanthroline have been found to be effective against several cancer cell lines, including A2780 human ovarian adenocarcinoma and HCT116 human colorectal carcinoma (Choroba et al., 2023). Currently, our research group focuses on creating metal complexes that have uses in biological systems. As part of this work, herein we present the synthesis and crystal structure of the title complex, which shows promise as a valuable precursor for the synthesis of novel zinc(II) complexes.

In the centrosymmetric crystal structure of the title complex, the zinc(II) atom is located on a twofold rotation axis (multiplicity 4, Wyckoff letter e) of space group C2/c. The coordination environment is that of a distorted tetra­hedron defined by two pyridine nitro­gen atoms from the 4,7-meth­oxy-1,10-phenanthroline ligand and two chlorido ligands (Fig. 1). The Zn—N bond lengths are in good agreement with comparable tetra­hedral 1,10-phenanthroline complexes currently available in the Cambridge Structure Database (CSD, version 5.45, Nov 2023; Groom et al., 2016): refcodes DUCBOT (Niu et al., 2009); TOBGOH (Li et al., 2008); GODCOU (Luo et al., 2019); QEVLIQ (Cetin et al., 2020); ZNPHAT (Reimann et al., 1966). At this time no 4,7-dimeth­oxy-1,10-phenanthroline zinc metal complexes have been deposited in the database. Similar behavior is observed for the Zn—Cl bond lengths. The τ4 descriptor value (Yang et al., 2007) of 0.87 reflects the distortion from the perfect tetra­hedral coordination (τ4 = 1.0). Numerical data of relevant bond lengths and angles are presented in Table 1.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity. Symmetry code: (i) −x + 1, y, −z +  Inline graphic .

Table 1. Selected geometric parameters (Å, °).

Zn1—Cl1 2.2186 (5) Zn1—N1i 2.0744 (18)
Zn1—Cl1i 2.2186 (5) Zn1—N1 2.0744 (18)
       
Cl1—Zn1—Cl1i 120.75 (3) N1i—Zn1—Cl1 107.88 (4)
N1i—Zn1—Cl1i 116.53 (4) N1—Zn1—Cl1i 107.88 (4)
N1—Zn1—Cl1 116.53 (4) N1i—Zn1—N1 80.66 (9)

Symmetry code: (i) Inline graphic .

The title complex packs into layers parallel to ( Inline graphic 01) (Fig. 2). Contiguous pyridine rings show weak ππ stacking inter­actions, with centroid-to-centroid distances (CgCg) alternating between 3.5969 (11) and 3.7738 (11) Å, and offset distances of 1.370 and 1.822 Å, respectively. No other significant supra­molecular inter­actions are present in the crystal packing of the title compound.

Figure 2.

Figure 2

Perspective view of the crystal packing of the title complex approximately along the b axis; H atoms are omitted for clarity.

Synthesis and crystallization

The title complex was synthesized by the addition of 4,7-dimeth­oxy-1,10-phenanthroline (0.176 g, 0.733 mmol) to a 40.0 ml aceto­nitrile suspension of zinc(II) chloride (0.100 g, 0.733 mmol). After the ligand was added, the resulting solution was heated at 333 K and stirred for 2 h. The resulting solution was then filtrated using a PTFE syringe filter to obtain a clear solution. Crystal suitable for X-ray diffraction were grown by vapor diffusion of diethyl ether over a satur­ated acetonitrile solution of the title complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [ZnCl2(C14H12N2O2)]
M r 376.53
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 14.7877 (6), 9.9287 (4), 9.5230 (3)
β (°) 95.233 (4)
V3) 1392.36 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.03
Crystal size (mm) 0.10 × 0.05 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023)
T min, T max 0.780, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6451, 1385, 1282
R int 0.044
(sin θ/λ)max−1) 0.630
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.078, 1.07
No. of reflections 1385
No. of parameters 97
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.54

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624000373/wm4203sup1.cif

x-09-x240037-sup1.cif (234.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624000373/wm4203Isup2.hkl

x-09-x240037-Isup2.hkl (112.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314624000373/wm4203Isup3.mol

CCDC reference: 2324427

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at the University of Texas at San Antonio.

full crystallographic data

Crystal data

[ZnCl2(C14H12N2O2)] F(000) = 760
Mr = 376.53 Dx = 1.796 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
a = 14.7877 (6) Å Cell parameters from 4164 reflections
b = 9.9287 (4) Å θ = 4.6–76.0°
c = 9.5230 (3) Å µ = 6.03 mm1
β = 95.233 (4)° T = 100 K
V = 1392.36 (9) Å3 Block, clear colourless
Z = 4 0.10 × 0.05 × 0.03 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 1385 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 1282 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.044
Detector resolution: 10.0000 pixels mm-1 θmax = 76.1°, θmin = 5.4°
ω scans h = −18→17
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) k = −10→12
Tmin = 0.780, Tmax = 1.000 l = −7→11
6451 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0424P)2 + 1.5215P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
1385 reflections Δρmax = 0.36 e Å3
97 parameters Δρmin = −0.54 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.500000 0.13609 (4) 0.250000 0.02301 (15)
Cl1 0.39338 (4) 0.02563 (5) 0.35249 (5) 0.03050 (17)
O1 0.66212 (10) 0.65250 (14) 0.53657 (14) 0.0218 (3)
N1 0.56174 (11) 0.29536 (17) 0.36247 (16) 0.0199 (3)
C5 0.53355 (13) 0.4178 (2) 0.30988 (19) 0.0182 (4)
C4 0.56632 (13) 0.5410 (2) 0.36602 (19) 0.0183 (4)
C6 0.53195 (13) 0.6646 (2) 0.30625 (19) 0.0189 (4)
H6 0.553852 0.747773 0.345289 0.023*
C2 0.66450 (14) 0.4095 (2) 0.5321 (2) 0.0218 (4)
H2 0.711381 0.402937 0.606948 0.026*
C3 0.63399 (13) 0.5341 (2) 0.48287 (19) 0.0194 (4)
C1 0.62520 (13) 0.2938 (2) 0.4699 (2) 0.0214 (4)
H1 0.645131 0.208835 0.506840 0.026*
C7 0.73512 (14) 0.6509 (2) 0.6477 (2) 0.0239 (4)
H7A 0.789459 0.611872 0.612157 0.036*
H7B 0.717317 0.596632 0.726610 0.036*
H7C 0.748220 0.743207 0.679964 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0248 (2) 0.0126 (2) 0.0319 (2) 0.000 0.00398 (15) 0.000
Cl1 0.0338 (3) 0.0212 (3) 0.0364 (3) −0.0083 (2) 0.0030 (2) 0.0048 (2)
O1 0.0250 (7) 0.0181 (7) 0.0219 (7) −0.0025 (6) −0.0002 (5) −0.0008 (5)
N1 0.0218 (7) 0.0143 (8) 0.0243 (8) 0.0015 (7) 0.0068 (6) 0.0027 (6)
C5 0.0202 (9) 0.0141 (10) 0.0211 (8) 0.0012 (8) 0.0075 (7) 0.0012 (7)
C4 0.0196 (8) 0.0168 (10) 0.0192 (8) −0.0011 (7) 0.0063 (7) −0.0004 (7)
C6 0.0208 (9) 0.0147 (9) 0.0220 (9) −0.0008 (8) 0.0058 (7) −0.0009 (7)
C2 0.0221 (9) 0.0235 (11) 0.0206 (8) 0.0013 (8) 0.0050 (7) 0.0021 (8)
C3 0.0213 (9) 0.0185 (10) 0.0196 (9) −0.0016 (8) 0.0076 (7) 0.0013 (7)
C1 0.0234 (9) 0.0174 (10) 0.0241 (9) 0.0032 (8) 0.0059 (7) 0.0052 (8)
C7 0.0239 (9) 0.0263 (11) 0.0210 (9) −0.0028 (9) −0.0005 (7) 0.0004 (8)

Geometric parameters (Å, º)

Zn1—Cl1 2.2186 (5) C4—C3 1.429 (3)
Zn1—Cl1i 2.2186 (5) C6—C6i 1.362 (4)
Zn1—N1i 2.0744 (18) C6—H6 0.9500
Zn1—N1 2.0744 (18) C2—H2 0.9500
O1—C3 1.334 (2) C2—C3 1.383 (3)
O1—C7 1.441 (2) C2—C1 1.395 (3)
N1—C5 1.365 (3) C1—H1 0.9500
N1—C1 1.324 (3) C7—H7A 0.9800
C5—C5i 1.442 (4) C7—H7B 0.9800
C5—C4 1.404 (3) C7—H7C 0.9800
C4—C6 1.427 (3)
Cl1—Zn1—Cl1i 120.75 (3) C6i—C6—C4 120.66 (11)
N1i—Zn1—Cl1i 116.53 (4) C6i—C6—H6 119.7
N1—Zn1—Cl1 116.53 (4) C3—C2—H2 120.6
N1i—Zn1—Cl1 107.88 (4) C3—C2—C1 118.81 (19)
N1—Zn1—Cl1i 107.88 (4) C1—C2—H2 120.6
N1i—Zn1—N1 80.66 (9) O1—C3—C4 115.33 (18)
C3—O1—C7 117.29 (16) O1—C3—C2 125.27 (18)
C5—N1—Zn1 112.59 (13) C2—C3—C4 119.40 (19)
C1—N1—Zn1 129.60 (15) N1—C1—C2 123.82 (19)
C1—N1—C5 117.74 (18) N1—C1—H1 118.1
N1—C5—C5i 117.08 (11) C2—C1—H1 118.1
N1—C5—C4 123.58 (18) O1—C7—H7A 109.5
C4—C5—C5i 119.34 (11) O1—C7—H7B 109.5
C5—C4—C6 119.99 (18) O1—C7—H7C 109.5
C5—C4—C3 116.58 (18) H7A—C7—H7B 109.5
C6—C4—C3 123.43 (18) H7A—C7—H7C 109.5
C4—C6—H6 119.7 H7B—C7—H7C 109.5
Zn1—N1—C5—C5i 1.0 (2) C6—C4—C3—O1 1.8 (2)
Zn1—N1—C5—C4 −178.96 (14) C6—C4—C3—C2 −178.77 (17)
Zn1—N1—C1—C2 176.64 (13) C3—C4—C6—C6i 179.3 (2)
N1—C5—C4—C6 −178.83 (16) C3—C2—C1—N1 2.2 (3)
N1—C5—C4—C3 1.2 (3) C1—N1—C5—C5i 178.14 (19)
C5—N1—C1—C2 0.1 (3) C1—N1—C5—C4 −1.8 (3)
C5i—C5—C4—C6 1.2 (3) C1—C2—C3—O1 176.58 (17)
C5i—C5—C4—C3 −178.81 (19) C1—C2—C3—C4 −2.8 (3)
C5—C4—C6—C6i −0.7 (3) C7—O1—C3—C4 −175.50 (15)
C5—C4—C3—O1 −178.24 (15) C7—O1—C3—C2 5.1 (3)
C5—C4—C3—C2 1.2 (2)

Symmetry code: (i) −x+1, y, −z+1/2.

Funding Statement

Funding for this research was provided by: National Science Foundation (award No. 1920059); Welch Foundation (award No. BN0032); The University of the Incarnate Word Faculty Endowed Research Award; Constance and Miriam Jauchler Jones Endowed Chair.

References

  1. Cetin, M. M., Shafiei–Haghighi, S., Chen, J., Zhang, S., Miller, A. C., Unruh, D. K., Casadonte, D. J. Jr, Lohr, T. L., Marks, T. J., Mayer, M. F., Stoddart, J. F. & Findlater, M. (2020). J. Polym. Sci. 58, 1130–1143.
  2. Choroba, K., Filipe, B., Świtlicka, A., Penkala, M., Machura, B., Bieńko, A., Cordeiro, S., Baptista, P. V. & Fernandes, A. R. (2023). J. Med. Chem. 66, 8580–8599. [DOI] [PMC free article] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. EL-Atawy, M. A., Ferretti, F. & Ragaini, F. (2018). Eur. J. Org. Chem. pp. 4818–4825.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Khoury, A., Elias, E., Mehanna, S., Shebaby, W., Deo, K. M., Mansour, N., Khalil, C., Sayyed, K., Sakoff, J. A., Gilbert, J., Daher, C. F., Gordon, C. P., Taleb, R. I. & Aldrich-Wright, J. R. (2022). J. Med. Chem. 65, 16481–16493. [DOI] [PubMed]
  7. Li, H., Hu, T. Q. & Zhang, S. G. (2008). Acta Cryst. E64, m771. [DOI] [PMC free article] [PubMed]
  8. Liu, M., Zhang, Z., Yan, J., Liu, S., Liu, H., Liu, Z., Wang, W., He, Z. & Han, B. (2020). Chem, 6, 3288–3296.
  9. Luo, Q., Peng, K., Zhang, J. & Xia, J. (2019). Organometallics, 38, 647–653.
  10. Niu, C.-Y., Dang, Y.-L., Wan, X.-S. & Kou, C.-H. (2009). Acta Cryst. E65, m860. [DOI] [PMC free article] [PubMed]
  11. Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.
  12. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624000373/wm4203sup1.cif

x-09-x240037-sup1.cif (234.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624000373/wm4203Isup2.hkl

x-09-x240037-Isup2.hkl (112.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314624000373/wm4203Isup3.mol

CCDC reference: 2324427

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES