Skip to main content
American Journal of Alzheimer's Disease and Other Dementias logoLink to American Journal of Alzheimer's Disease and Other Dementias
. 2010 Jun;25(4):324–332. doi: 10.1177/1533317510363468

The Value of PET in Mild Cognitive Impairment, Typical and Atypical/Unclear Dementias: A Retrospective Memory Clinic Study

Robert Laforce Jr 1, James P Buteau 2, Nancy Paquet 3, Louis Verret 4, Michèle Houde 5, Rémi W Bouchard 6
PMCID: PMC10845361  PMID: 20539026

Abstract

This retrospective study examined the role of [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) in the diagnosis of atypical/unclear dementias in a memory clinic setting. A total of 94 patients with a diagnosis of mild cognitive impairment (MCI) or dementia, who had a PET study within 2 months of their diagnosis, were reevaluated at 5 and 18 months. Results showed that PET was associated with a change in diagnosis in 29% of patients and a 64% increase in the use of cholinesterase inhibitors (ChEIs). PET significantly lowered the number of atypical/unclear diagnoses from 39.4% to 16% and nearly 30% of these were found to have a typical Alzheimer’s disease (AD) pattern of hypometabolism. In conclusion, the addition of PET to the investigation of atypical/unclear cases of dementia helped generating a more accurate diagnosis and initiating earlier treatment. PET was of limited contribution to typical AD and frontotemporal dementia (FTD) cases. This study provides guiding evidence about the true value of PET imaging in the day-to-day challenge of dementia diagnosis.

Keywords: positron emission tomography, Alzheimer’s disease, atypical dementia, memory clinic, mild cognitive impairment, frontotemporal dementia

Full Text

The Full Text of this article is available as a PDF (1,006.5 KB).

Contributor Information

Robert Laforce, Jr, Clinique de Mémoire, Département des Sciences Neurologiques, Centre Hospitalier Affilié Universitaire de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada, robert.laforce-jr.1@ulaval.ca .

James P. Buteau, Clinique de Mémoire, Département des Sciences Neurologiques, Centre Hospitalier Affilié Universitaire de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada.

Nancy Paquet, Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada.

Louis Verret, Clinique de Mémoire, Département des Sciences Neurologiques, Centre Hospitalier Affilié Universitaire de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada.

Michèle Houde, Clinique de Mémoire, Département des Sciences Neurologiques, Centre Hospitalier Affilié Universitaire de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada.

Rémi W. Bouchard, Clinique de Mémoire, Département des Sciences Neurologiques, Centre Hospitalier Affilié Universitaire de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada.

References

  1. Herholz K., Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol . 2007;80(2):160-167. [DOI] [PubMed] [Google Scholar]
  2. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32(4):486-510. [DOI] [PubMed] [Google Scholar]
  3. Mosconi L., Tsui WH, Herholz K., et al. Multicenter standardized FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49(3):390-398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Pakrasi S., O’Brien JT Emission tomography in dementia. Nucl Med Commun. 2005;26(3):189-196. [DOI] [PubMed] [Google Scholar]
  5. Silverman DH , Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120-2127. [DOI] [PubMed] [Google Scholar]
  6. Whitwell JL, Jack CR Neuroimaging in dementia. Neurol Clin. 2007. ;25(3):843-857. [DOI] [PubMed] [Google Scholar]
  7. Mendez MF, Shapira JS, McMurtray A., Licht E., Miller BL Accuracy of the clinical evaluation for frontotemporal dementia. Arch Neurol. 2007;64(6):830-835. [DOI] [PubMed] [Google Scholar]
  8. Mosconi L., Brys M., Glodzik-Sobanska L., De Santi S., Rusinek H., de Leon MJ Early detection of Alzheimer’s disease using neuroimaging. Exp Gerontol. 2007;42(1-2):129-138. [DOI] [PubMed] [Google Scholar]
  9. Silverman DH , Cummings JL, Small GW, et al. Added clinical benefit of incorporating 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography into the clinical evaluation of patients with cognitive impairment. Mol Imaging Biol. 2002;4(4):283-293. [DOI] [PubMed] [Google Scholar]
  10. Jagust W., Reed B., Mungas D., et al. What does FDG PET imaging add to a clinical diagnosis of dementia ? Neurology. 2007;69(9): 871-877. [DOI] [PubMed] [Google Scholar]
  11. Silverman DH , Truong CT, Kim SK, et al. Prognostic value of regional cerebral metabolism in patients undergoing dementia evaluation: comparison to a quantifying parameter of subsequent cognitive performance and to prognostic assessment without PET. Mol Genet Metab. 2003;80(3):350-355. [DOI] [PubMed] [Google Scholar]
  12. Ibach B., Poljansky S., Marienhagen J., et al. Contrasting metabolic impairment in frontotemporal degeneration and early onset Alzheimer’s disease. Neuroimage. 2004;23(2):739-743. [DOI] [PubMed] [Google Scholar]
  13. Jeong Y., Cho SS, Park JM, et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med. 2005;46(2):233-239. [PubMed] [Google Scholar]
  14. Salmon E., Garraux G., Delbeuck X., et al. Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia. Neuroimage. 2003;20(1):435-440. [DOI] [PubMed] [Google Scholar]
  15. Varma AR, Adams W., Lloyd JJ, et al. Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on SPECT in young onset patients with Alzheimer’s disease, frontotemporal dementia and vascular dementia. Acta Neurol Scand. 2002;105(4):261-269. [DOI] [PubMed] [Google Scholar]
  16. Gilman S., Koeppe RA, Little R., et al. Differentiation of Alzheimer’s disease from dementia with Lewy bodies utilizing positron emission tomography with [18F]fluorodeoxyglucose and neuropsychological testing. Exp Neurol. 2005;191(suppl 1): S95-S103. [DOI] [PubMed] [Google Scholar]
  17. Minoshima S. , Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation . Ann Neurol. 2001;50(3):358-365. [DOI] [PubMed] [Google Scholar]
  18. Knopman DS, DeKosky ST, Cummings JL, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56(9): 1143-1153. [DOI] [PubMed] [Google Scholar]
  19. Moulin-Romsee G., Maes A., Silverman D., Mortelmans L., Van Laere K. Cost-effectiveness of 18F-fluorodeoxyglucose positron emission tomography in the assessment of early dementia from a Belgian and European perspective. Eur J Neurol. 2005. ;12(4):254-263. [DOI] [PubMed] [Google Scholar]
  20. Silverman DH , Gambhir SS, Huang HW, et al. Evaluating early dementia with and without assessment of regional cerebral metabolism by PET: a comparison of predicted costs and benefits. J Nucl Med. 2002;43(2):253-266. [PubMed] [Google Scholar]
  21. Gill SS, Rochon PA, Guttman M., Laupacis A. The value of positron emission tomography in the clinical evaluation of dementia . J Am Geriatr Soc. 2003;51(2):258-264. [DOI] [PubMed] [Google Scholar]
  22. Galasko D., Hansen LA, Katzman R., et al. Clinicalneuropathological correlations in Alzheimer’s disease and related dementias. Arch Neurol. 1994;51(9):888-895. [DOI] [PubMed] [Google Scholar]
  23. Feldman HH, Jacova C., Robillard A., et al. Diagnosis and treatment of dementia. CMAJ. 2008;178(7):825-836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. DeCarli C. The role of neuroimaging in dementia. Clin Geriatr Med. 2001;17(2):255-279. [DOI] [PubMed] [Google Scholar]
  25. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). 4th ed. Washington, D.C.: American Psychiatric Association; 1994. [Google Scholar]
  26. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan EM Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939-944. [DOI] [PubMed] [Google Scholar]
  27. McKhann GM, Albert MS, Grossman M., et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease . Arch Neurol. 2001;58(11):1803-1809. [DOI] [PubMed] [Google Scholar]
  28. Chui HC, Victoroff JI, Margolin D., Jagust W., Shankle R., Katzman R. Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer’s Disease Diagnostic and Treatment Centers. Neurology. 1992;42(3 pt 1): 473-480. [DOI] [PubMed] [Google Scholar]
  29. McKeith IG, Galasko D., Kosaka K., et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47(5):1113-1124. [DOI] [PubMed] [Google Scholar]
  30. Diehl J., Grimmer T., Drzezga A., Riemenschneider M., Förstl H., Kurz A. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging. 2004;25(8):1051-1056. [DOI] [PubMed] [Google Scholar]
  31. Drzezga A., Grimmer T., Siebner H., Minoshima S., Schwaiger M., Kurz A. Prominent hypometabolism of the right temporoparietal and frontal cortex in two left-handed patients with primary progressive aphasia. J Neurol. 2002;249(9):1263-1267. [DOI] [PubMed] [Google Scholar]
  32. Camargo EE Brain SPECT in neurology and psychiatry. J Nucl Med. 2001;42(4):611-623. [PubMed] [Google Scholar]
  33. Petersen RC , Doody R., Kurz A., et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985-1992. [DOI] [PubMed] [Google Scholar]
  34. Drzezga A., Lautenschlager N., Siebner H., et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30(8):1104-1113. [DOI] [PubMed] [Google Scholar]
  35. Huang C., Wahlund LO, Svensson L., Winblad B., Julin P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol. 2002;2:9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Alzheimer's Disease and Other Dementias are provided here courtesy of SAGE Publications

RESOURCES