Skip to main content
American Journal of Alzheimer's Disease and Other Dementias logoLink to American Journal of Alzheimer's Disease and Other Dementias
. 2010 Nov;25(7):585–591. doi: 10.1177/1533317510382892

Morphological Changes of the Human Purkinje Cells and Deposition of Neuritic Plaques and Neurofibrillary Tangles on the Cerebellar Cortex of Alzheimer’s Disease

Ioannis A Mavroudis 1, Dimitrios F Fotiou 2, Luc F Adipepe 3, Marina G Manani 4, Samuel D Njau 5, Dimitrios Psaroulis 6, Vasiliki G Costa 7, Stavros J Baloyannis 8
PMCID: PMC10845446  PMID: 20870670

Abstract

Alzheimer’s disease is a neurodegenerative disorder, characterized by progressive decline in memory and in social performance. The morphological hallmarks of the disease are neuronal loss, loss of dendritic spines, neurofibrillary degeneration and neuritic plaques mainly in the hippocampus and the cortex of the cerebral hemispheres. This study is based on the morphological analysis of the cerebellar cortices of eight brains, 4 patients suffered from Alzheimer’s disease and 4 normal controls, by Golgi method, as well as Nissl, Gallyas’, Bielschowsky’s, Methenamine Silver staining and Congo red methods. Although typical neuritic plaques were not seen in the cerebellar cortex and the diffuse plaques found in the cerebellum in far smaller proportion than plaques in the prefrontal and parietal cortices of the same cases, Golgi impregnation technique revealed a loss of Purkinje cells and a marked decrease in the density of dendritic arborization.

Keywords: Alzheimer, Purkinje, cerebellum, golgi method, diffuse plaques

Full Text

The Full Text of this article is available as a PDF (598.6 KB).

Contributor Information

Ioannis A. Mavroudis, Laboratory of Neuropathology and Electron Microscopy, First Department of Neurology, Aristotelian University of Thessaloniki, Thessaloniki, Greece, iamav79@hotmail.com .

Dimitrios F. Fotiou, Laboratory of Neuropathology and Electron Microscopy, First Department of Neurology, Aristotelian University of Thessaloniki, Thessaloniki, Greece.

Luc F. Adipepe, Laboratory of Neuropathology and Electron Microscopy, First Department of Neurology, Aristotelian University of Thessaloniki, Thessaloniki, Greece.

Marina G. Manani, Laboratory of Neuropathology and Electron Microscopy, First Department of Neurology, Aristotelian University of Thessaloniki, Thessaloniki, Greece.

Samuel D. Njau, Laboratoy of Forensic Medicine and Toxicology, Aristotelian University of Thessaloniki, Thessaloniki, Greece.

Dimitrios Psaroulis, Laboratoy of Forensic Medicine and Toxicology, Aristotelian University of Thessaloniki, Thessaloniki, Greece.

Vasiliki G. Costa, Laboratory of Neuropathology and Electron Microscopy, First Department of Neurology, Aristotelian University of Thessaloniki, Thessaloniki, Greece.

Stavros J. Baloyannis, Laboratory of Neuropathology and Electron Microscopy, First Department of Neurology, Aristotelian University of Thessaloniki, Thessaloniki, Greece.

References

  1. Baloyannis SJ Neuropathology of Dementia. Thessaloniki; 1993, Editor: SJ Baloyannis, 1st Department of Neurology, Aristotelian University of Thessaloniki; , Greece. [Google Scholar]
  2. Baloyannis SJ , Manolidis SL, Manolidis LS Synaptic alterations in the vestibulocerebellar system in Alzheimer’s disease-a golgi and electron microscope study . Acta Otolaryngol. 2000;120(2):247-250. [DOI] [PubMed] [Google Scholar]
  3. Wegiel J., Wisniewski HM, Dziewiatkowski J., et al. Cerebellar atrophy in Alzheimer’s disease-clinicopathological correlations. Brain Res. 1999;818(1):41-50. [DOI] [PubMed] [Google Scholar]
  4. Larner AJ The cerebellum in Alzheimer’s disease. Dement Geriatr Cogn Disord. 1997;8(4):204-209. [DOI] [PubMed] [Google Scholar]
  5. Dickson DW, Wertkin A., Mattiace LA, et al. Ubiquitin immunoelectron microscopy of dystrophic neurites in cerebellar senile plaques of Alzheimer’s disease. Acta Neuropathol (Berl: ). 1990;79(5):486-493. [DOI] [PubMed] [Google Scholar]
  6. Yamamoto T., Hirano A. Hirano bodies in the perikaryon of the Purkinje cell in a case of Alzheimer’s disease. Acta Neuropathol ( Berl: ). 1985;67(1-2):167-169. [DOI] [PubMed] [Google Scholar]
  7. Fukutani Y., Cairns NJ, Rossor MN, Lantos PL Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett. 1996;214(1):33-36. [DOI] [PubMed] [Google Scholar]
  8. Sun A., Nguyen XV, Bing G. Comparative analysis of an improved thioflavin-S stain, gallyas silver stain, and immunohistochemistry for neurofibrillary tangle demonstration on the same sections. J Histochem Cytochem. 2002. ;50(4):463-472. [DOI] [PubMed] [Google Scholar]
  9. Wisniewski HM , Wen GY, Kim KS Comparison of four staining methods on the detection of neuritic plaques. Acta Neuropathol. 1989;78(1):22-27. [DOI] [PubMed] [Google Scholar]
  10. Yamaguchi H. , Hirai S., Morimatsu M., Shoji M., Harigaya Y. Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol. 1988;77(2):113-119. [DOI] [PubMed] [Google Scholar]
  11. Haga C., Ikeda K., Iwabuchi K., Akiyama H., Kondoh H., Kosaka K. Methenamine-silver staining: a simple and sensitive staining method for senile plaques and neurofibrillary tangles. Biotech Histochem . 1994;69(5):295-300. [DOI] [PubMed] [Google Scholar]
  12. Yamaguchi H. , Haga C., Hirai S., Nakazato Y., Kosaka K. Methenamine silver staining integrates amyloid- related components of senile plaques in the Alzheimer brains as clearly as β protein immunostaining. Ann Rep Col Care Techol Gumma Univ. 1989;10:121-130. [Google Scholar]
  13. Kamiya S., Yamagami T., Fujii S., Yamano S., Umeda M., Sugiyama M. Senile plaques in the Beagle brain. Bull Nippon Vet Anim Sci . 1995;44:1-4. [Google Scholar]
  14. Khachaturian ZS Diagnosis of Alzheimer’s disease. Arch Neurol. 1985;42(11):1097-1104. [DOI] [PubMed] [Google Scholar]
  15. Gallyas F. Factors affecting the formation of metallic silver and the binding of silver ions by tissue components. Histochemistry and Cell Biology . 64(1):97-109, DOI: 10.1007/BF00493358. [DOI] [PubMed] [Google Scholar]
  16. Jacobs B., Driscoll L., Schall M. Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi Study. J Comp Neurol. 1997;386(4):661-680. [PubMed] [Google Scholar]
  17. Sholl DA Dendritic organization of the neurons of the visual and motor cortices of the cat. J Anat. 1953;87(4):387-406. [PMC free article] [PubMed] [Google Scholar]
  18. Williams RS , Ferrante RJ, Caviness VS Jr. The Golgi rapid method in clinical neuropathology: morphological consequences of suboptimal fixation. J Neuropath Exp Neurol. 1978;37(1):13-33. [DOI] [PubMed] [Google Scholar]
  19. Baloyannis SJ On the Fine Structure if Purkinje Cells of the Human Cerebellum. Thessaloniki: Aristotelian University; 1975. [Google Scholar]
  20. Iwatsubo T. , Odaka A., Suzuki N., Mizusawa H., Nukina N., Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific Abeta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13(1):45-53. [DOI] [PubMed] [Google Scholar]
  21. Murphy GM Jr , Forno LS , Higgins L., Scardina JM, Eng LF, Cordell B. Development of a monoclonal antibody specific for the COOH-terminal of beta-amyloid 1-42 and its immunohistochemical reactivity in Alzheimer’s disease and related disorders. Am J Pathol . 1994;144(5):1082-1088. [PMC free article] [PubMed] [Google Scholar]
  22. Du J., Sun B., Chen K., et al. Metabolites of cerebellar neurons and hippocampal neurons play opposite roles in pathogenesis of Alzheimer’s disease. PLoS One. 2009;4(5):e5530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. De Ruiter JP , Uylings HBM. Morphometric and dendritic analysis of fascia dentate granule cells in human aging and senile dementia. Brain Res. 1987. ;402:217-229. [DOI] [PubMed] [Google Scholar]
  24. Dowsona JH, Mountjoyb CQ, Cairnsa MR, Wilton-Coxa H., Bondareffc W. Lipopigment changes in purkinje cells in Alzheimer’s disease . J Alzheimers Dis. 1998;1(2):71-79. [DOI] [PubMed] [Google Scholar]
  25. Terry RD, Hansen LH Some morphometric aspects of Alzheimer disease and of normal aging . In Terry RD, ed. Aging and the Brain. Vol 32. New York, NY: : Raven press; 1988. : 109-114. [Google Scholar]
  26. Wegiel J., Wisniewski HM, Dziewiatkowski J., et al. Cerebellar atrophy in Alzheimer’s disease-clinicopathological correlations. Brain Res. 1999;818(1):41-50. [DOI] [PubMed] [Google Scholar]
  27. Baloyannis SJ The molecular layer of the human cerebellum in Alzheimer’s disease. Eur J Neurol. 1996;3:14. [Google Scholar]
  28. Baloyannis SJ The mossy fibers of the cerebellar cortex in Alzheimer’s disease. An electron microscopy study. Neuroscience. 1997;2:160-161. [Google Scholar]

Articles from American Journal of Alzheimer's Disease and Other Dementias are provided here courtesy of SAGE Publications

RESOURCES