Abstract
Presenilin-1 (PS-1) mutations are associated with familial Alzheimer's disease (AD). Although beta-amyloid (Aβ) plaques in brain tissue are characteristic of AD patients, space occupying “cotton-wool” plaques (CWPs) lacking dense Aβ cores have also been described in patients with mutations in exon 9 of the PS-1 gene. The composition of CWPs has not been fully described. To better elucidate the composition of these space-occupying plaques, we used immunohistochemistry with antibodies to the synaptic proteins synapsin-1 and synaptophysin, as well as antibodies to tau, Aβ-42, Aβ-40, ubiquitin, neurofilament, and glial fibrillary acidic protein. Confocal laser scanning microscopy (CLSM) was utilized to further characterize these plaques. CWPs showed increased synapsin-1 and synaptophysin immunoreactivity relative to the background gray matter. Synaptic protein-containing CWPs occurred in all affected MTL regions, including the granule cell layer of the dentate gyrus, where synaptic terminals are usually sparse. These data suggest that in C410Y PS-1 AD patients, CWPs may constitute a major component of synaptic terminal-specific proteins, and that the C410Y PS-1 mutation may influence either synaptic structure or synaptic protein expression.
Keywords: Alzheimer's disease, beta-amyloid, presenilin-1, regeneration, synapse, synaptophysin
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Contributor Information
Kamran Haleem, Drexel University College of Medicine, Philadelphia, Pennsylvania.
Carol F. Lippa, Drexel University College of Medicine, Philadelphia, Pennsylvania, clippa@drexelmed.edu .
Thomas W. Smith, University of Massachusetts Medical School, Worcester, Massachusetts.
Hisatomo Kowa, University of Tokyo, Japan.
Jianlin Wu, Drexel University College of Medicine, Philadelphia, Pennsylvania.
Takeshi Iwatsubo, University of Tokyo, Japan.
References
- Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003; 60:1119-1122. [DOI] [PubMed] [Google Scholar]
- Kang J., Lemaire HG, Unterbeck A., et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325:733-736. [DOI] [PubMed] [Google Scholar]
- Chartier-Harlin MC, Crawford F., Houlden H., et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 1991;353:844-846. [DOI] [PubMed] [Google Scholar]
- Goate A., Chartier-Harlin MC, Mullan M., et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991;349:704-706. [DOI] [PubMed] [Google Scholar]
- Schellenberg GD, Boehnke M., Wijsman EM, Moore DK, Martin GM, Bird TD Genetic association and linkage analysis of the apolipoprotein CII locus and familial Alzheimer's disease. Annals of Neurology 1992. ;31:223-227. [DOI] [PubMed] [Google Scholar]
- Sherrington R., Rogaev EI, Liang Y., et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995;375:754-760. [DOI] [PubMed] [Google Scholar]
- Levy-Lahad E. , Wijsman EM, Nemens E., et al. A familial Alzheimer's disease locus on chromosome 1. Science 1995;269:970-973. [DOI] [PubMed] [Google Scholar]
- Rogaev EI, Sherrington R., Rogaeva EA, et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995;376:775-778. [DOI] [PubMed] [Google Scholar]
- Kovacs DM, Fausett HJ, Page KJ, et al. Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 1996;2:224-229. [DOI] [PubMed] [Google Scholar]
- Beher D., Elle C., Underwood J., et al. Proteolytic fragments of Alzheimer's disease-associated presenilin 1 are present in synaptic organelles and growth cone membranes of rat brain . J Neurochem 1999;72:1564-1573. [DOI] [PubMed] [Google Scholar]
- Doan A., Thinakaran G., Borchelt DR, et al. Protein topology of presenilin 1. Neuron 1996;17:1023-1030. [DOI] [PubMed] [Google Scholar]
- Thinakaran G., Borchelt DR, Lee MK, et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 1996;17:181-190. [DOI] [PubMed] [Google Scholar]
- De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 2003;38:9-12. [DOI] [PubMed] [Google Scholar]
- Lee SF, Shah S., Li H., Yu C., Han W., Yu G. Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. J Biol Chem 2002. ;277:45013-45019. [DOI] [PubMed] [Google Scholar]
- Steiner H., Winkler E., Edbauer D., et al. PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. J Biol Chem 2002;277:39062-39065. [DOI] [PubMed] [Google Scholar]
- Citron M., Westaway D., Xia W., et al. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice . Nat Med 1997;3:67-72. [DOI] [PubMed] [Google Scholar]
- De Strooper B, Saftig P., Craessaerts K., et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998;391:387-390. [DOI] [PubMed] [Google Scholar]
- De Strooper B, Annaert W., Cupers P., et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999;398: 518-522. [DOI] [PubMed] [Google Scholar]
- Struhl G., Greenwald I. Presenilin is required for activity and nuclear access of Notch in Drosophila . Nature 1999;398:522-525. [DOI] [PubMed] [Google Scholar]
- Ye Y., Lukinova N., Fortini ME Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 1999;398:525-529. [DOI] [PubMed] [Google Scholar]
- Crook R., Verkkoniemi A., Perez-Tur J., et al. A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med 1998;4:452-455. [DOI] [PubMed] [Google Scholar]
- Verkkoniemi A., Kalimo H., Paetau A., et al. Variant Alzheimer disease with spastic paraparesis: neuropathological phenotype. J Neuropathol Exp Neurol 2001;60:483-492. [DOI] [PubMed] [Google Scholar]
- Le TV, Crook R., Hardy J., Dickson DW Cotton wool plaques in non-familial late-onset Alzheimer disease. J Neuropathol Exp Neurol 2001;60:1051-1061. [DOI] [PubMed] [Google Scholar]
- McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan EM Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944. [DOI] [PubMed] [Google Scholar]
- Lippa CF, Nee LE, Mori H., St George-Hyslop P. Abeta-42 deposition precedes other changes in PS-1 Alzheimer's disease [letter] . Lancet 1998;352:1117-1118. [DOI] [PubMed] [Google Scholar]
- Braak H., Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer's disease . Neurobiol Aging 1997;18:S85-S88. [DOI] [PubMed] [Google Scholar]
- Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. The National Institute on Aging, and Reagan Institute working group on diagnostic criteria for the pathological assessment of Alzheimer's disease . Neurobiol Aging 1997;18:51-52. [PubMed] [Google Scholar]
- McLean IW, Nakane PK Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem 1974;22:1077-1083. [DOI] [PubMed] [Google Scholar]
- Lippa CF, Hamos JE, Pulaski-Salo D., DeGennaro LJ, Drachman DA Alzheimer's disease and aging: effects on perforant pathway perikarya and synapses. Neurobiol Aging 1992;13:405-411. [DOI] [PubMed] [Google Scholar]
- Mirra SS, Heyman A., McKeel D., et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991;4:479-486. [DOI] [PubMed] [Google Scholar]
- Lippa CF, Ozawa K., Mann DM, et al. Deposition of beta-amyloid subtypes 40 and 42 differentiates dementia with Lewy bodies from Alzheimer disease. Arch Neurol 1999; 56:1111-1118. [DOI] [PubMed] [Google Scholar]
- Terry RD, Masliah E., Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991;30:572-580. [DOI] [PubMed] [Google Scholar]
- Hamos JE, DeGennaro LJ, Drachman DA Synaptic loss in Alzheimer's disease and other dementias. Neurology 1989;39:355-361. [DOI] [PubMed] [Google Scholar]
- Espinosa B. , Zenteno R., Mena R., Robitaille Y., Zenteno E., Guevara J. O-Glycosylation in sprouting neurons in Alzheimer disease, indicating reactive plasticity. J Neuropathol Exp Neurol 2001;60:441-448. [DOI] [PubMed] [Google Scholar]
- Chuckowree JA, Dickson TC, Vickers JC Intrinsic regenerative ability of mature CNS neurons. Neuroscientist 2004;10:280-285. [DOI] [PubMed] [Google Scholar]
- King CE, Jacobs I., Dickson TC, Vickers JC Physical damage to rat cortical axons mimics early Alzheimer's neuronal pathology . Neuroreport 1997;8:1663-1665. [PubMed] [Google Scholar]
- Vickers JC, Chin D., Edwards AM, Sampson V., Harper C., Morrison J. Dystrophic neurite formation associated with age-related beta amyloid deposition in the neocortex: clues to the genesis of neurofibrillary pathology. Exp Neurol 1996;141:1-11. [DOI] [PubMed] [Google Scholar]
- Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G. The cause of neuronal degeneration in Alzheimer's disease. Prog Neurobiol 2000;60: 139-165. [DOI] [PubMed] [Google Scholar]
- Phinney AL, Deller T., Stalder M., et al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J Neurosci 1999;19:8552-8559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teter B., Xu PT, Gilbert JR, Roses AD, Galasko D., Cole GM Defective neuronal sprouting by human apolipoprotein E4 is a gain-of-negative function. J Neurosci Res 2002; 68:331-336. [DOI] [PubMed] [Google Scholar]
- Artavanis-Tsakonas S., Simpson P. Choosing a cell fate: a view from the Notch locus. Trends Genet 1991. ;7:403-408. [DOI] [PubMed] [Google Scholar]
- Artavanis-Tsakonas S., Delidakis C., Fehon RG The Notch locus and the cell biology of neuroblast segregation. Annu Rev Cell Biol 1991;7:427-452. [DOI] [PubMed] [Google Scholar]
- Artavanis-Tsakonas S., Rand MD, Lake RJ Notch signaling: cell fate control and signal integration in development. Science 1999;284:770-776. [DOI] [PubMed] [Google Scholar]
- Brennan K., Tateson R., Lewis K., Arias AM A functional analysis of Notch mutations in Drosophila. Genetics 1997;147:177-188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoppe PE, Greenspan RJ The Notch locus of Drosophila is required in epidermal cells for epidermal development. Development 1990; 109:875-885. [DOI] [PubMed] [Google Scholar]
- Berezovska O., Xia MQ, Hyman BT Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropathol Exp Neurol 1998;57:738-745. [DOI] [PubMed] [Google Scholar]
- Stump G., Durrer A., Klein AL, Lutolf S., Suter U., Taylor V. Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech Dev 2002;114:153-159. [DOI] [PubMed] [Google Scholar]
- Berezovska O., McLean P., Knowles R., et al. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 1999;93:433-439. [DOI] [PubMed] [Google Scholar]
- Wang Y., Chan SL, Miele L., et al. Involvement of Notch signaling in hippocampal synaptic plasticity . Proc Natl Acad Sci U S A 2004;101:9458-9462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song W., Nadeau P., Yuan M., Yang X., Shen J., Yankner BA Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc Natl Acad Sci U S A 1999; 96:6959-6963. [DOI] [PMC free article] [PubMed] [Google Scholar]