Abstract
Alzheimer disease (AD) is the most common form of dementia. Different pathogenic processes have been studied that underlie characteristic changes of AD, including Aβ protein aggregation, tau phosphorylation, neurovascular dysfunction, and inflammatory processes. Insulin exerts pleiotropic effects in neurons, such as the regulation of neural proliferation, apoptosis, and synaptic transmission. In this setting, any disturbance in the metabolism of insulin in the central nervous system (CNS) may put unfavorable effects on CNS function. It seems that disturbances in insulin metabolism, especially insulin resistance, play a role in most pathogenic processes that promote the development of AD. In this article, the relationships of disturbances in the metabolism of insulin in CNS with Aβ peptides aggregation, tau protein phosphorylation, inflammatory markers, neuron apoptosis, neurovascular dysfunction, and neurotransmitter modulation are discussed, and future research directions are provided.
Keywords: Alzheimer disease, dementia, insulin resistance
Full Text
The Full Text of this article is available as a PDF (82.0 KB).
Contributor Information
Behnam Sabayan, Student Research Center, Shiraz University of Medical Sciences.
Farzaneh Foroughinia, Student Research Center, Shiraz University of Medical Sciences, farzanehforoughinia@yahoo.com .
Arash Mowla, Department of Psychiatry, Shiraz University of Medical Sciences.
Afshin Borhanihaghighi, Department of Neurology Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
References
- Zilka N., Novak M. The tangled story of Alois Alzheimer. Bratisl Lek Listy. 2006;107:343-345. [PubMed] [Google Scholar]
- Caselli RJ, Beach TG, Yaari R., Reiman EM Alzheimer's disease a century later. J Clin Psychiatry . 2006;67: 1784-1800. [DOI] [PubMed] [Google Scholar]
- Brown RC, Lockwood AH, Sonawane BR Neurodegenerative diseases: an overview of environmental risk factors . Environ Health Perspect. 2005;113: 1250-1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blennow K., de Leon MJ, Zetterberg H. Alzheimer's disease. Lancet. 2006;368:387-403. [DOI] [PubMed] [Google Scholar]
- Watson GS, Peskind ER, Asthana S., et al. Insulin increases CSF Abeta42 levels in normal older adults . Neurology. 2003;60:1899-1903. [DOI] [PubMed] [Google Scholar]
- Cherrier MM, Plymate S., Mohan S., et al. Relationship between testosterone supplementation and insulin-like growth factor-I levels and cognition in healthy older men. Psychoneuroendocrinology. 2004;29:65-82. [DOI] [PubMed] [Google Scholar]
- Kakeya T., Takeuchi S., Takahashi S. Epidermal growth factor, insulin, and estrogen stimulate development of prolactin-secreting cells in cultures of GH3 cells. Cell Tissue Res. 2000;299:237-243. [DOI] [PubMed] [Google Scholar]
- Plum L., Belgardt BF, Brüning JC Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006; 116:1761-1766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guan J., Thomas GB, Lin H., et al. Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic-ischemic adult rats. Neuropharmacology. 2004;47:892-903. [DOI] [PubMed] [Google Scholar]
- Kanzaki M. Insulin receptor signals regulating GLUT4 translocation and actin dynamics . Endocr J. 2006;53: 267-293. [DOI] [PubMed] [Google Scholar]
- Plum L., Schubert M., Brüning JC The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16:59-65. [DOI] [PubMed] [Google Scholar]
- Sonntag WE, Ramsey M., Carter CS Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4:195-212. [DOI] [PubMed] [Google Scholar]
- Fehm HL, Perras B., Smolnik R., Kern W., Born J. Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology . Eur J Pharmacol. 2000;405:43-54. [DOI] [PubMed] [Google Scholar]
- Craft S., Newcomer J., Kanne S., et al. Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol Aging. 1996;17:123-130. [DOI] [PubMed] [Google Scholar]
- Kern W., Peters A., Fruehwald-Schultes B., Deininger E., Born J., Fehm HL Improving influence of insulin on cognitive functions in humans. Neuroendocrinology. 2001; 74:270-280. [DOI] [PubMed] [Google Scholar]
- De la Monte SM, Tong M., Lester-Coll N., Plater M. Jr, Wands JR Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J Alzheimers Dis. 2006;10:89-109. [DOI] [PubMed] [Google Scholar]
- Fernandes ML , Saad MJ, Velloso LA Effects of age on elements of insulin-signaling pathway in central nervous system of rats. Endocrine. 2001;16:227-234. [DOI] [PubMed] [Google Scholar]
- Hardy J., Selkoe DJ The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002. ;297:353-356. [DOI] [PubMed] [Google Scholar]
- Ling Y., Morgan K., Kalsheker N. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease. Int J Biochem Cell Biol . 2003;35:1505-1535. [DOI] [PubMed] [Google Scholar]
- Qiu WQ, Folstein MF Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging. 2006;27:190-198. [DOI] [PubMed] [Google Scholar]
- Bennett RG, Duckworth WC, Hamel FG Degradation of amylin by insulin-degrading enzyme. J Biol Chem. 2000;275:36621-36625. [DOI] [PubMed] [Google Scholar]
- Edbauer D., Willem M., Lammich S., Steiner H., Haass C. Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD). J Biol Chem. 2002;277:13389-13393. [DOI] [PubMed] [Google Scholar]
- Craft S., Asthana S., Cook DG, et al. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer's disease: interactions with apolipoprotein E genotype . Psychoneuroendocrinology. 2003;28:809-822. [DOI] [PubMed] [Google Scholar]
- Gasparini L. , Gouras GK, Wang R., et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci. 2001;21: 2561-2570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia ML, Cleveland DW Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol. 2001;13:41-48. [DOI] [PubMed] [Google Scholar]
- Yoshida H., Hastie CJ, McLauchlan H., Cohen P., Goedert M. Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem. 2004. ;90:352-358. [DOI] [PubMed] [Google Scholar]
- Deutsch SI, Rosse RB, Lakshman RM Dysregulation of tau phosphorylation is a hypothesized point of convergence in the pathogenesis of Alzheimer's disease, frontotemporal dementia and schizophrenia with therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1369-1380. [DOI] [PubMed] [Google Scholar]
- Reynolds CH , Betts JC, Blackstock WP, Nebreda AR, Anderton BH Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem . 2000;74:1587-1595. [DOI] [PubMed] [Google Scholar]
- Cho JH, Johnson GV Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J Neurochem. 2004. ;88:349-358. [DOI] [PubMed] [Google Scholar]
- Jämsä A. , Hasslund K., Cowburn RF, Bäckstrom A., Vasänge M. The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer's disease-like tau phosphorylation. Biochem Biophys Res Commun. 2004;319:993-1000. [DOI] [PubMed] [Google Scholar]
- Stoothoff WH , Johnson GV Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta. 2005;1739:280-297. [DOI] [PubMed] [Google Scholar]
- Schubert M. , Gautam D., Surjo D., et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A. 2004;101:3100-3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freude S., Plum L., Schnitker J., et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes. 2005;54:3343-3348. [DOI] [PubMed] [Google Scholar]
- Weisman D., Hakimian E., Ho GJ Interleukins, inflammation, and mechanisms of Alzheimer's disease . Vitam Horm. 2006;74:505-530. [DOI] [PubMed] [Google Scholar]
- Fishel MA, Watson GS, Montine TJ, et al. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol. 2005;62:1539-1544. [DOI] [PubMed] [Google Scholar]
- Quinn JF, Montine KS, Moore M., Morrow JD, Kaye JA, Montine TJ Suppression of longitudinal increase in CSF F2-isoprostanes in Alzheimer's disease. J Alzheimers Dis. 2004;6:93-97. [DOI] [PubMed] [Google Scholar]
- Lue LF, Walker DG, Rogers J. Modeling microglial activation in Alzheimer's disease with human postmortem microglial cultures. Neurobiol Aging. 2001. ;22:945-956. [DOI] [PubMed] [Google Scholar]
- Román GC Vascular dementia. Advances in nosology, diagnosis, treatment and prevention . Panminerva Med. 2004;46:207-215. [PubMed] [Google Scholar]
- Wajant H., Scheurich P. Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int J Biochem Cell Biol. 2001. ;33:19-32. [DOI] [PubMed] [Google Scholar]
- Seabrook TJ , Jiang L., Maier M., Lemere CA Minocycline affects microglia activation, Abeta deposition, and behavior in APP-tg mice. Glia. 2006;53:776-782. [DOI] [PubMed] [Google Scholar]
- Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNKdependent MAPK pathway. J Biol Chem. 2004;279: 49523-49523. [DOI] [PubMed] [Google Scholar]
- Sondag CM, Combs CK Amyloid precursor protein cross-linking stimulates beta amyloid production and pro-inflammatory cytokine release in monocytic lineage cells. J Neurochem. 2006;97:449-461. [DOI] [PubMed] [Google Scholar]
- Heneka MT, O'Banion MK Inflammatory processes in Alzheimer's disease. J Neuroimmunol . 2007;184: 69-91. [DOI] [PubMed] [Google Scholar]
- Heneka MT, Ramanathan M., Jacobs AH, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci . 2006;26:1343-1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rathcke CN, Vestergaard H. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm Res. 2006;55:221-227. [DOI] [PubMed] [Google Scholar]
- Haffner SM The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol. 2006;97:3A-11A. [DOI] [PubMed] [Google Scholar]
- Roberts AJ, Funston RN, Moss GE Insulin-like growth factor binding proteins in the bovine anterior pituitary . Endocrine. 2001;14:399-406. [DOI] [PubMed] [Google Scholar]
- Watson GS, Bernhardt T., Reger MA, et al. Insulin effects on CSF norepinephrine and cognition in Alzheimer's disease. Neurobiol Aging. 2006;27:38-41. [DOI] [PubMed] [Google Scholar]
- Ramakrishnan R., Kempuraj D., Prabhakaran K., et al. A short-term diabetes induced changes of catecholamines and p38-MAPK in discrete areas of rat brain. Life Sci. 2005;77:1825-1835. [DOI] [PubMed] [Google Scholar]
- Neve RL, McPhie DL The cell cycle as a therapeutic target for Alzheimer's disease. Pharmacol Ther. 2006; 111:99-113. [DOI] [PubMed] [Google Scholar]
- Carro E., Trejo JL, Nunez A., Torres-Aleman I. Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol. 2003;23:153-162. [DOI] [PubMed] [Google Scholar]
- Cardona-Gómez GP, Mendez P., DonCarlos LL, Azcoitia I., Garcia-Segura LM Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. Brain Res Brain Res Rev. 2001;37:320-334. [DOI] [PubMed] [Google Scholar]
- Aguado-Llera D., Arilla-Ferreiro E., Campos-Barros A., Puebla-Jiménez L., Barrios V. Protective effects of insulin-like growth factor-I on the somatostatinergic system in the temporal cortex of beta-amyloid-treated rats. J Neurochem. 2005;92:607-615. [DOI] [PubMed] [Google Scholar]
- Cohen JA, Jeffers BW, Faldut D., Marcoux M., Schrier RW Risks for sensorimotor peripheral neuropathy and autonomic neuropathy in non-insulin-dependent diabetes mellitus (NIDDM). Muscle Nerve. 1998. ;21:72-80. [DOI] [PubMed] [Google Scholar]
- Zhong J., Deng J., Huang S., Yang X., Lee WH High K+ and IGF-1 protect cerebellar granule neurons via distinct signaling pathways. J Neurosci Res. 2004;75:794-806. [DOI] [PubMed] [Google Scholar]
- Li ZG, Zhang W., Sima AA C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev. 2003;19:375-385. [DOI] [PubMed] [Google Scholar]
- Ferrannini E., Galvan AQ, Gastaldelli A., et al. Insulin: new roles for an ancient hormone. Eur J Clin Invest. 1999;29:842-852. [DOI] [PubMed] [Google Scholar]
- Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49:1525-1533. [DOI] [PubMed] [Google Scholar]
- Lester-Coll N., Rivera EJ, Soscia SJ, Doiron K., Wands JR, de la Monte SM Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis. 2006;9:13-33. [DOI] [PubMed] [Google Scholar]
- Dutta J., Fan Y., Gupta N., Fan G., Gélinas C. Current insights into the regulation of programmed cell death by NF-kappaB . Oncogene. 2006;25:6800-6816. [DOI] [PubMed] [Google Scholar]
- Cottin V., Van Linden AA, Riches DW Phosphorylation of the tumor necrosis factor receptor CD120a (p55) recruits Bcl-2 and protects against apoptosis. J Biol Chem . 2001;276:17252-17260. [DOI] [PubMed] [Google Scholar]
- Al-Rasheed NM, Willars GB, Brunskill NJ C-peptide signals via Galpha i to protect against TNF-alpha-mediated apoptosis of opossum kidney proximal tubular cells . J Am Soc Nephrol. 2006;17:986-995. [DOI] [PubMed] [Google Scholar]
- Hong M., Lee VM Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem. 1997. ;272:19547-19553. [DOI] [PubMed] [Google Scholar]
- Carro E., Trejo JL, Gerber A., et al. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging. 2006;27:1250-1257. [DOI] [PubMed] [Google Scholar]
- Steen E., Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease-is this type 3 diabetes? J Alzheimers Dis. 2005;7:63-80. [DOI] [PubMed] [Google Scholar]
- Yun SY, Kim SP, Song DK Effects of (-)-epigallocatechin-3-gallate on pancreatic beta-cell damage in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2006;541: 115-121. [DOI] [PubMed] [Google Scholar]
- Wada R., Yagihashi S. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann N Y Acad Sci. 2005;1043:598-604. [DOI] [PubMed] [Google Scholar]
- Gillery P. Oxidative stress and protein glycation in diabetes mellitus. Ann Biol Clin (Paris). 2006;64:309-314. [PubMed] [Google Scholar]
- Niedowicz DM , Daleke DL The role of oxidative stress in diabetic complications . Cell Biochem Biophys. 2005; 43:289-330. [DOI] [PubMed] [Google Scholar]
- Won SJ, Kim DY, Gwag BJ Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol. 2002;35:67-86. [DOI] [PubMed] [Google Scholar]
- Loh KP, Huang SH, De Silva R., Tan BK, Zhu YZ Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res.2006;3:327-337. [DOI] [PubMed] [Google Scholar]
- Onyango IG, Khan SM Oxidative stress, mitochondrial dysfunction, and stress signaling in Alzheimer's disease. Curr Alzheimer Res. 2006;3:339-349. [DOI] [PubMed] [Google Scholar]
- Niedermeyer E. Considerations of the ischemic basis and therapy of Alzheimer disease. Clin EEG Neurosci. 2007. ;38:55-56. [DOI] [PubMed] [Google Scholar]
- Pluta R. Blood-brain barrier dysfunction and amyloid precursor protein ccumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival. Acta Neurochir Suppl. 2003. ;86: 117-122. [DOI] [PubMed] [Google Scholar]
- Turner AJ, Fisk L., Nalivaeva NN Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration . Ann N Y Acad Sci. 2004;1035:1-20. [DOI] [PubMed] [Google Scholar]
- Sadowski M. , Pankiewicz J., Scholtzova H., et al. Links between the pathology of Alzheimer's disease and vascular dementia. Neurochem Res. 2004;29:1257-1266. [DOI] [PubMed] [Google Scholar]
- Rasgon NL, Kenna HA Insulin resistance in depressive disorders and Alzheimer's disease: revisiting the missing link hypothesis. Neurobiol Aging. 2005;26(suppl 1):103-107. [DOI] [PubMed] [Google Scholar]
- Harris-White ME, Frautschy SA Low density lipoprotein receptor-related proteins (LRPs), Alzheimer's and cognition. Curr Drug Targets CNS Neurol Disord. 2005;4: 469-480. [DOI] [PubMed] [Google Scholar]
- Das UN Can memory be improved? A discussion on the role of ras, GABA, acetylcholine, NO, insulin, TNF-alpha, and long-chain polyunsaturated fatty acids in memory formation and consolidation. Brain Dev. 2003. ;25:251-261. [DOI] [PubMed] [Google Scholar]
- Blin J., Ray CA, Piercey MF, Bartko JJ, Mouradian MM, Chase TN Comparison of cholinergic drug effects on regional brain glucose consumption in rats and humans by means of autoradiography and position emission tomography . Brain Res. 1994;635:196-202. [DOI] [PubMed] [Google Scholar]
- Durkin TP, Messier C., de Boer P., Westerink BH Raised glucose levels enhance scopolamine-induced acetylcholine overflow from the hippocampus: an in vivo microdialysis study in the rat. Behav Brain Res.1992;49:181-188. [DOI] [PubMed] [Google Scholar]
- Szuba MP, O'Reardon JP, Evans DL Physiological effects of electroconvulsive therapy and transcranial magnetic stimulation in major depression. Depress Anxiety . 2000;12:170-177. [DOI] [PubMed] [Google Scholar]
- Shibata S., Koga Y., Hamada T., Watanabe S. Facilitation of 2-deoxyglucose uptake in rat cortex and hippocampus slices by somatostatin is independent of cholinergic activity. Eur J Pharmacol. 1993;231:381-388. [DOI] [PubMed] [Google Scholar]
- Messier C., Gagnon M. Glucose regulation and cognitive functions: relation to Alzheimer's disease and diabetes. Behav Brain Res. 1996. ;75:1-11. [DOI] [PubMed] [Google Scholar]
- Tsiouris JA Metabolic depression in hibernation and major depression: an explanatory theory and an animal model of depression. Med Hypotheses. 2005;65:829-840. [DOI] [PubMed] [Google Scholar]
- Gold PW, Licinio J., Wong ML, Chrousos GP Corticotropin releasing hormone in the pathophysiology of melancholic and atypical depression and in the mechanism of action of antidepressant drugs . Ann N Y Acad Sci. 1995;771:716-729. [DOI] [PubMed] [Google Scholar]
- Martinot J. , Hardy P., Feline A., et al. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry. 1990;147:1313-1317. [DOI] [PubMed] [Google Scholar]
- Mayberg HS, Lewis PJ, Regengold W., Wagner HN Jr. Paralimbic hypoperfusion in unipolar depression . J Nucl Med. 1994;35:929-934. [PubMed] [Google Scholar]
- Buchsbaum MS , Wu J., DeLisi LE, et al. Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with (18F) 2-deoxyglucose in affective illness. J Affect Disord .1986;10:137-152. [DOI] [PubMed] [Google Scholar]
- Van Uden E. , Kang DE, Koo EH, Masliah E. LDL receptor-related protein (LRP) in Alzheimer's disease: towards a unified theory of pathogenesis . Microsc Res Tech. 2000; 50:268-272. [DOI] [PubMed] [Google Scholar]
- Diebold K., Michel G., Schweizer J., Diebold-Dorsam M., Fiehn W., Kohl B. Are psychoactive-drug-induced changes in plasma lipid and lipoprotein levels of significance for clinical remission in psychiatric disorders? Pharmacopsychiatry.1998;31:60-67. [DOI] [PubMed] [Google Scholar]
- Penttinen J. Hypothesis: low serum cholesterol, suicide, and interleukin-2. Am J Epidemiol. 1995;141: 716-718. [DOI] [PubMed] [Google Scholar]
- Laakso M., Kuusisto J. Epidemiological evidence for the association of hyperglycaemia and atherosclerotic vascular disease in non-insulin dependent diabetes mellitus . Ann Med. 1996;28:415-418. [DOI] [PubMed] [Google Scholar]
- Sherwin BB Estrogen effects on cognition in menopausal women. Neurology . 1997;48(5 suppl 7):S21-S26. [DOI] [PubMed] [Google Scholar]
- Crandall EA , Gillis MA, Fernstrom JD Reduction in brain serotonin synthesis rate in streptozotocin-diabetic rats. Endocrinology . 1981;109:310-312. [DOI] [PubMed] [Google Scholar]
- Malone JI Growth and sexual maturation in children with insulindependent diabetes mellitus . Curr Opin Pediatr. 1993;5:494-498. [DOI] [PubMed] [Google Scholar]
- O'Brien JT, Ames D., Schweitzer I., Colman P., Desmond P., Tress B. Clinical and magnetic resonance imaging correlates of hypothalamicpituitary-adrenal-axis function in depression and Alzheimer's disease. Br J Psychiatry . 1996;168:679-687. [DOI] [PubMed] [Google Scholar]
- de Leon MJ, McRae T., Tsai JR, et al. Abnormal cortisol response in Alzheimer's disease linked to hippocampal atrophy. Lancet. 1988;2:391-392. [DOI] [PubMed] [Google Scholar]
- Hirsch IB, Boyle PJ, Craft S., Cryer PE Higher glycemic thresholds for symptoms during beta-adrenergic blockade in IDDM. Diabetes.1991;40:1177-1186. [DOI] [PubMed] [Google Scholar]
- Salpolsky RM Depression, antidepressants and shrinking the hippocampus. Proc Natl Acad Sci U S A. 2001;98: 12320-12322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasgon N., Jarvik L. Insulin resistance, affective disorders and Alzheimer disease: review and hypothesis. J Gerontol A Biol Sci Med Sci. 2004;59:178-183. [DOI] [PubMed] [Google Scholar]
- Sabayan B. , Foroughinia F., Haghighi AB, Mowla A. Are women with polycystic ovary syndrome (PCOS) at higher risk for development of Alzheimer disease? Alzheimer Dis Assoc Disord. 2007;21:265-267. [DOI] [PubMed] [Google Scholar]
- Coimbra A. , Williams DS, Hostetler ED The role of MRI and PET/SPECT in Alzheimer's disease. Curr Top Med Chem. 2006;6:629-647. [DOI] [PubMed] [Google Scholar]