Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jan 12;80(Pt 2):148–151. doi: 10.1107/S2056989024000239

Synthesis and crystal structure of N 1,N 2-di­methyl­ethane­dihydrazide

Yurii S Bibik a,*, Dmytro M Khomenko a,b, Roman O Doroshchuk a,b, Ilona V Raspertova a,b, Alexandra Bargan c, Rostyslav D Lampeka a
Editor: L Van Meerveltd
PMCID: PMC10848980  PMID: 38333116

In the title compound, the two hydrazide planes make a dihedral angle of 86.5 (2)°. In the crystal, C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds lead to the formation of a three-dimensional supra­molecular network.

Keywords: crystal structure, X-ray crystallography, hydrazide, hydrogen bonds

Abstract

The title compound, N 1,N 2-di­methyl­ethane­dihydrazide, C4H10N4O2, was obtained by the methyl­ation of oxalyl dihydrazide protected with phthalimide. The mol­ecule is essentially non-planar with a dihedral angle between the two planar hydrazide fragments of 86.5 (2)°. This geometry contributes to the formation of a multi-contact three-dimensional supra­molecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds.

1. Chemical context

For over a century, researchers have aimed to synthesize diverse heterocycles using well-established available methods. Currently, there is significant research inter­est in developing new methods for their synthesis, focusing on efficient and atom-economical routes (Favi, 2020; Pathan et al., 2020). Among these novel synthetic approaches, the utilization of hydrazides stands out as one of the most appealing methods for synthesizing heterocyclic compounds such as pyrazoles, triazoles, oxa­diazo­les and pyridazines (Majumdar et al., 2014; Mittersteiner et al., 2021; Hosseini & Bayat, 2018; Khomenko et al., 2022).

Organic acid hydrazides constitute a broad group of hydrazine derivatives containing the functional group –C(=O)NHNH2. Therefore, this keen inter­est in hydrazide chemistry appears to arise not only from their diversity but also from the unique properties of these compounds. Acid hydrazides and their derivatives such as hydrazones possess biological activities including anti­convulsant (Angelova et al., 2016), anti­depressant (Ergenç et al., 1998), anti-inflammatory (Kajal et al., 2014), anti­malarial (Walcourt et al., 2004), anti­mycobacterial (Shalini et al., 2019), anti­cancer (Witusik-Perkowska et al., 2023; Küçükgüzel et al., 2015) and anti­microbial (Hiremathad et al., 2015; Popiołek et al., 2022; Berillo & Dyusebaeva, 2022; Popiołek, 2021). Hydrazides are also bidentate ligands that can form chelate complexes (Ju et al., 2023). 1.

Considering the above, we report on the synthesis and crystal structure of a new alkyl­ated oxalyl dihydrazide as an attractive synthon for the synthesis of biologically active organic compounds and metal complexes.

2. Structural commentary

The title compound crystalizes in the ortho­rhom­bic Sohncke space group P212121 with four formula units per unit cell (Fig. 1). The crystal structure does not show other tautomeric forms. Bond lengths and angles are given in Table 1. The geometrical parameters are comparable to the values found in methyl­semicarbazide (Szimhardt & Stierstorfer, 2018) and oxalyl dihydrazide (Quaeyhaegens et al., 1990). The methyl hydrazide core [–C(=O)N(—CH3)NH2] is almost planar (r.m.s. deviation = 0.022 Å). The torsion angles around the N1—C2 and N3—C3 bonds are N2—N1—C2—O1 = 175.1 (4)°, C1—N1—C2—O1 = −1.2 (5)°, N4—N3—C3—O2 = 174.8 (4)°, and C4—N3—C3—O2 = −1.4 (6)°. The methyl hydrazide fragments are almost perpendicular to each other [the dihedral angle between the two moieties is 86.5 (2)°]. The torsion angles around the C2—C3 bond are O1—C2—C3—O2 = 89.9 (4), O1—C2—C3—N3 = −81.4 (4), N1—C2—C3—O2 = −83.2 (4), and N1—C2—C3—N3 = 105.5 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

O1—C2 1.231 (4) N3—N4 1.414 (4)
O2—C3 1.233 (4) N3—C3 1.319 (4)
N1—N2 1.412 (4) N3—C4 1.460 (4)
N1—C1 1.460 (4) C2—C3 1.511 (5)
N1—C2 1.331 (4)    
       
N2—N1—C1 119.9 (3) O1—C2—N1 123.8 (3)
C2—N1—N2 117.6 (3) O1—C2—C3 118.2 (3)
C2—N1—C1 122.4 (3) N1—C2—C3 117.7 (3)
N4—N3—C4 120.5 (3) O2—C3—N3 124.1 (4)
C3—N3—N4 117.3 (3) O2—C3—C2 118.7 (3)
C3—N3—C4 122.1 (4) N3—C3—C2 116.5 (3)

3. Supra­molecular features

In the crystal, each mol­ecule forms chains along the a-axis direction with two neighboring ones via N—H⋯O hydrogen bonds (Table 2, Fig. 2). Neighboring chains form a 3D supra­molecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen-bonding contacts (Table 2, Fig. 3).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O1i 0.96 2.58 3.042 (4) 110
N2—H2A⋯O2ii 0.87 (5) 2.13 (5) 2.977 (4) 164 (4)
N2—H2B⋯O2iii 0.90 (3) 2.35 (3) 3.182 (4) 155 (3)
N4—H4A⋯O1iv 0.79 (4) 2.30 (4) 3.075 (5) 169 (4)
N4—H4B⋯N2v 0.99 (5) 2.38 (5) 3.367 (5) 170 (4)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 2.

Figure 2

One-dimensional chains along the a-axis direction formed by N—H⋯O hydrogen bonding.

Figure 3.

Figure 3

A view normal to plane (100) of the crystal structure of the title compound, showing the three-dimensional supra­molecular hydrogen-bonding network.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update November 2021; Groom et al., 2016) confirmed that the title compound has not previously been published. A search for the N—N—C(=O)—C(=O)—N—N fragment gave oxalyl dihydrazide (CSD refcode VIPKIO; Quaeyhaegens et al., 1990), its salts: EREQOK (Wu, 2021), NEXMIP (Xu et al., 2018), MIDNOG (Devi et al., 2018), VUHYUU and VUHZAB (Fischer et al., 2014), ZIBBIX and ZIBDAR (Fischer et al., 2013), and Schiff bases derived from it as the closest analogues: CUQPAF (Drexler et al., 1999), HIRHIB (Singh et al., 2013), IYACUH (Ran et al., 2011), KUTREX (Kaluderović et al., 2010), LORQEP (Bi et al., 2009), NAJWUT (Singh et al., 2016), NEQQOQ (Zhu et al., 2006), RIRTET (Singh et al., 2014), SUYWUG (Galvão et al., 2016), UMIZUN (El-Asmy et al., 2015), ZOLQUP and ZOLRAW (Fries et al., 2019). For compound ZOLQOJ (Fries et al., 2019), the fragment is part of a ring structure. Notably, a strictly planar structure is observed for the mol­ecules oxalyl dihydrazide VIPKIO and dimethyl oxalate DMEOXA (Dougill & Jeffrey, 1953).

A search for the methyl hydrazide moiety gave methyl­semicarbazide (XIBFEW; Szimhardt & Stierstorfer, 2018). Its geometric parameters agree well with those of the title compound. Further searches also revealed two structural analogues with a second non-hydrogen substituent at the amide-nitro­gen atom: N,N,N′,N′-tetra­methyl­oxamide and N,N,N′,N′-tetra­methyl­mono­thio­oxamide (TMOXAM and TMTHOX, respectively; Adiwidjaja & Voss, 1977). These two crystal structures have a different packing and belong to monoclinic space groups. However, they exhibit very similar geometries in terms of the rotation of the mol­ecule fragments around the central C—C bond. The O=C—C=O(S) torsion angles are 105.1 (2) and 89.6 (2)°, respectively.

5. Synthesis and crystallization

The title compound (5) was obtained according to the reaction scheme shown in Fig. 4.

Figure 4.

Figure 4

Synthesis of the title compound.

N , N ’-bis­(1,3-dioxo-1,3-di­hydro-2 H -isoindol-2-yl)ethanedi­amide (3): compound 3 was synthesized from the commercially available precursors (Enamine Ltd.) according to the following method: 12.45 g (84 mmol, 2 eq.) of phthalic anhydride (2) were dissolved in 125 ml of DMF and 4.96 g (42 mmol, 1 eq.) of oxalyl dihydrazide (1) were added to the boiling solution. The obtained mixture was refluxed for 5 h. Upon cooling, precipitation of the product was observed. It was filtered off and dried. White powder; yield 73%. 1H NMR (400 MHz, DMSO-d 6): δ 8.05–8.15 (m, 4H, 4-Ph), 11.57 (br, 1H, NH).

N 1 , N 2-di­methyl­ethane­dihydrazide (5): 11.0 g (79.7 mmol, 3 eq.) of K2CO3 and 3.65 ml (58.6 mmol, 2.2 eq.) of CH3I were added to a solution containing 10.0 g (26.5 mmol, 1 eq.) of compound 3 in 50 ml DMF. The reaction mixture was stirred for 6 h at room temperature. The inorganic precipitate was filtered off, the filtrate was evaporated and the residue was stirred in water, filtered off and dried in air. Yield: 9.9 g.

The crude precipitate of 4 (4 g, 9.8 mmol, 1 eq.) obtained from the previous step was refluxed with 1.1 ml (20.6 mmol, 2.1 eq.) of methyl­hydrazine in ethanol for 6 h. The precipitate was filtered off, ethanol was evaporated and the residue was recrystallized from 2-propanol and dried in air. The title compound was isolated as a white solid. Crystals suitable for X-ray analysis were obtained during the recrystallization. White powder; yield 84%. LC–MS (ESI) m/z 147 (MH+) . IR (ATR, ν, cm−1) : ν 3290, 3214, 1672, 1616, 1414, 1386, 1234, 1066, 1014, 870, 782, 762. 1H NMR (400 MHz, DMSO-d 6): δ 2.90*, 2.95 and 3.00* (s, 3H, CH3), 4.68, 4.85* and 4.93* (s, 2H, NH2). *Minor signals indicate hindered rotation about the (O)C—N bond.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For the NH2 group, the hydrogen atoms were placed from a difference-Fourier map and refined freely. The CH3 hydrogen atoms were placed geometrically and refined as riding with C—H = 0.96 Å and U iso(H) = 1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C4H10N4O2
M r 146.16
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 6.0356 (5), 7.6501 (6), 15.7851 (14)
V3) 728.84 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.25 × 0.2 × 0.15
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.975, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2356, 1279, 1014
R int 0.027
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.093, 1.04
No. of reflections 1279
No. of parameters 107
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.12
Absolute structure Flack x determined using 280 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.7 (10)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024000239/vm2294sup1.cif

e-80-00148-sup1.cif (109.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000239/vm2294Isup4.hkl

e-80-00148-Isup4.hkl (103.7KB, hkl)

CCDC reference: 2323887

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Ministry of Education and Science of Ukraine and to the Ministry of Research, Innovation and Digitization of Romania for financial support.

supplementary crystallographic information

Crystal data

C4H10N4O2 Dx = 1.332 Mg m3
Mr = 146.16 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 809 reflections
a = 6.0356 (5) Å θ = 2.6–21.5°
b = 7.6501 (6) Å µ = 0.11 mm1
c = 15.7851 (14) Å T = 293 K
V = 728.84 (10) Å3 Prism, clear light colourless
Z = 4 0.25 × 0.2 × 0.15 mm
F(000) = 312

Data collection

Xcalibur, Eos diffractometer 1279 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 1014 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 8.0797 pixels mm-1 θmax = 25.0°, θmin = 2.6°
ω scans h = −4→7
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) k = −6→9
Tmin = 0.975, Tmax = 1.000 l = −17→18
2356 measured reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0311P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.14 e Å3
1279 reflections Δρmin = −0.11 e Å3
107 parameters Absolute structure: Flack x determined using 280 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
6 restraints Absolute structure parameter: −0.7 (10)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.3495 (5) −0.6601 (3) −0.39158 (16) 0.0534 (8)
O2 −0.1053 (4) −0.3057 (4) −0.38063 (17) 0.0565 (8)
N1 −0.5715 (5) −0.4389 (3) −0.43410 (17) 0.0356 (8)
N2 −0.6265 (6) −0.2617 (4) −0.4206 (2) 0.0390 (8)
N3 −0.2831 (5) −0.3723 (4) −0.2592 (2) 0.0418 (8)
N4 −0.4758 (7) −0.4508 (6) −0.2252 (2) 0.0510 (10)
C1 −0.7056 (7) −0.5453 (5) −0.4913 (2) 0.0520 (11)
H1A −0.703336 −0.494920 −0.546990 0.078*
H1B −0.855356 −0.549500 −0.470930 0.078*
H1C −0.646056 −0.661570 −0.493510 0.078*
C2 −0.4040 (6) −0.5050 (5) −0.3896 (2) 0.0357 (9)
C3 −0.2571 (6) −0.3787 (4) −0.3421 (2) 0.0359 (9)
C4 −0.1283 (7) −0.2793 (5) −0.2043 (3) 0.0661 (13)
H4C −0.188175 −0.166675 −0.190369 0.099*
H4D 0.010785 −0.264855 −0.232939 0.099*
H4E −0.105945 −0.345315 −0.153239 0.099*
H2A −0.763 (8) −0.255 (5) −0.404 (2) 0.061 (14)*
H4A −0.537 (7) −0.378 (5) −0.199 (2) 0.053 (15)*
H2B −0.621 (6) −0.208 (5) −0.471 (2) 0.056 (14)*
H4B −0.432 (9) −0.548 (7) −0.187 (3) 0.12 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0640 (19) 0.0427 (15) 0.0536 (18) 0.0182 (15) −0.0038 (16) −0.0062 (13)
O2 0.0318 (15) 0.084 (2) 0.0542 (18) −0.0106 (15) 0.0054 (15) 0.0102 (15)
N1 0.0346 (17) 0.0386 (16) 0.0335 (17) 0.0029 (15) −0.0068 (15) −0.0064 (14)
N2 0.0321 (19) 0.0372 (18) 0.048 (2) 0.0026 (17) 0.0011 (18) 0.0011 (17)
N3 0.0361 (18) 0.051 (2) 0.0377 (19) −0.0037 (18) −0.0046 (16) −0.0015 (15)
N4 0.058 (3) 0.056 (2) 0.039 (2) −0.002 (2) 0.0052 (19) −0.002 (2)
C1 0.060 (3) 0.055 (2) 0.041 (2) −0.005 (2) −0.013 (2) −0.011 (2)
C2 0.037 (2) 0.043 (2) 0.0267 (19) 0.0058 (19) 0.0072 (19) −0.0023 (17)
C3 0.029 (2) 0.044 (2) 0.035 (2) 0.0081 (19) −0.0022 (18) 0.0048 (18)
C4 0.057 (3) 0.084 (3) 0.057 (3) −0.008 (3) −0.017 (3) −0.015 (3)

Geometric parameters (Å, º)

O1—C2 1.231 (4) N4—H4A 0.79 (4)
O2—C3 1.233 (4) N4—H4B 0.99 (5)
N1—N2 1.412 (4) C1—H1A 0.9599
N1—C1 1.460 (4) C1—H1B 0.9601
N1—C2 1.331 (4) C1—H1C 0.9600
N2—H2A 0.87 (4) C2—C3 1.511 (5)
N2—H2B 0.89 (4) C4—H4C 0.9600
N3—N4 1.414 (4) C4—H4D 0.9600
N3—C3 1.319 (4) C4—H4E 0.9601
N3—C4 1.460 (4)
N2—N1—C1 119.9 (3) H1A—C1—H1B 109.5
C2—N1—N2 117.6 (3) H1A—C1—H1C 109.5
C2—N1—C1 122.4 (3) H1B—C1—H1C 109.5
N1—N2—H2A 109 (3) O1—C2—N1 123.8 (3)
N1—N2—H2B 108 (2) O1—C2—C3 118.2 (3)
H2A—N2—H2B 106 (4) N1—C2—C3 117.7 (3)
N4—N3—C4 120.5 (3) O2—C3—N3 124.1 (4)
C3—N3—N4 117.3 (3) O2—C3—C2 118.7 (3)
C3—N3—C4 122.1 (4) N3—C3—C2 116.5 (3)
N3—N4—H4A 107 (3) N3—C4—H4C 109.4
N3—N4—H4B 109 (3) N3—C4—H4D 109.6
H4A—N4—H4B 109 (4) N3—C4—H4E 109.4
N1—C1—H1A 109.6 H4C—C4—H4D 109.5
N1—C1—H1B 109.5 H4C—C4—H4E 109.5
N1—C1—H1C 109.4 H4D—C4—H4E 109.5
O1—C2—C3—O2 89.9 (4) N4—N3—C3—O2 174.8 (4)
O1—C2—C3—N3 −81.4 (4) N4—N3—C3—C2 −14.4 (5)
N1—C2—C3—O2 −83.2 (4) C1—N1—C2—O1 −1.2 (5)
N1—C2—C3—N3 105.5 (4) C1—N1—C2—C3 171.6 (3)
N2—N1—C2—O1 175.1 (4) C4—N3—C3—O2 −1.4 (6)
N2—N1—C2—C3 −12.2 (4) C4—N3—C3—C2 169.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1C···O1i 0.96 2.58 3.042 (4) 110
N2—H2A···O2ii 0.87 (5) 2.13 (5) 2.977 (4) 164 (4)
N2—H2B···O2iii 0.90 (3) 2.35 (3) 3.182 (4) 155 (3)
N4—H4A···O1iv 0.79 (4) 2.30 (4) 3.075 (5) 169 (4)
N4—H4B···N2v 0.99 (5) 2.38 (5) 3.367 (5) 170 (4)

Symmetry codes: (i) x−1/2, −y−3/2, −z−1; (ii) x−1, y, z; (iii) x−1/2, −y−1/2, −z−1; (iv) −x−1, y+1/2, −z−1/2; (v) −x−1, y−1/2, −z−1/2.

Funding Statement

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant for the perspective development of the scientific direction ‘Mathematical sciences and natural sciences’ and grant No. 22BF037-06 at the Taras Shevchenko National University of Kyiv); Ministry of Research, Innovation and Digitization (Romania), CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2021-3900, within PNCDI III, Contract PED 698/2022 (AI-Syn-PPOSS).

References

  1. Adiwidjaja, G. & Voss, J. (1977). Chem. Ber. 110, 1159–1166.
  2. Angelova, V., Karabeliov, V., Andreeva–Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379–392. [DOI] [PubMed]
  3. Berillo, D. A. & Dyusebaeva, M. A. (2022). Saudi Pharm. J. 30, 1036–1043. [DOI] [PMC free article] [PubMed]
  4. Bi, W.-T., Hu, N.-L. & Bi, J.-H. (2009). Acta Cryst. E65, o782. [DOI] [PMC free article] [PubMed]
  5. Devi, A., Dharavath, S. & Ghule, V. D. (2018). ChemistrySelect, 3, 4501–4504.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Dougill, M. W. & Jeffrey, G. A. (1953). Acta Cryst. 6, 831–837.
  8. Drexler, K., Dehne, H. & Reinke, H. (1999). CSD Communication (CCDC 137595, refcode CUQPAF). CCDC, Cambridge, England.
  9. El-Asmy, A., Jeragh, B. & Ali, M. (2015). Chem. Cent. J. 9, 69. [DOI] [PMC free article] [PubMed]
  10. Ergenç, N., Günay, N. S. & Demirdamar, R. (1998). Eur. J. Med. Chem. 33, 143–148.
  11. Favi, G. (2020). Molecules, 25, 10–13. [DOI] [PMC free article] [PubMed]
  12. Fischer, D., Klapötke, T. M. & Stierstorfer, J. (2014). J. Energetic Mater. 32, 37–49.
  13. Fischer, N., Klapötke, T. M., Reymann, M. & Stierstorfer, J. (2013). Eur. J. Inorg. Chem. pp. 2167–2180.
  14. Fries, M., Mertens, M., Teske, N., Kipp, M., Beyer, C., Willms, T., Valkonen, A., Rissanen, K., Albrecht, M. & Clarner, T. (2019). ACS Omega, 4, 1685–1689.
  15. Galvão, A. M., Carvalho, M. F. N. N. & Ferreira, A. S. D. (2016). J. Mol. Struct. 1108, 708–716.
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Hiremathad, A., Patil, M. R., Chand, K., Santos, M. A. & Keri, R. S. (2015). RSC Adv. 5, 96809–96828.
  18. Hosseini, H. & Bayat, M. (2018). Cyanoacetohydrazides. In Synthesis of Heterocyclic Compounds. Cham, Switzerland: Springer International Publishing. [DOI] [PubMed]
  19. Ju, H., Zhu, Q. L., Zuo, M., Liang, S., Du, M., Zheng, Q. & Wu, Z. L. (2023). Chem. Eur. J. 29, e202300969. [DOI] [PubMed]
  20. Kajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 2014, 1–11.
  21. Kaluderović, G. N., Mohamad Eshkourfu, R. O., Gómez-Ruiz, S., Mitić, D. & Andelković, K. K. (2010). Acta Cryst. E66, o904–o905. [DOI] [PMC free article] [PubMed]
  22. Khomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. C. 58, 116–128. [DOI] [PMC free article] [PubMed]
  23. Küçükgüzel, G. Ş., Koç, D., Çıkla–Süzgün, P., Özsavcı, D., Bingöl–Özakpınar, Ö., Mega–Tiber, P., Orun, O., Erzincan, P., Sağ–Erdem, S. & Şahin, F. (2015). Arch. Pharm. 348, 730–742. [DOI] [PubMed]
  24. Majumdar, P., Pati, A., Patra, M., Behera, R. K. & Behera, A. K. (2014). Chem. Rev. 114, 2942–2977. [DOI] [PubMed]
  25. Mittersteiner, M., Bonacorso, H. G., Martins, M. A. P. & Zanatta, N. (2021). Eur. J. Org. Chem. pp. 3886–3911.
  26. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  27. Pathan, S. I., Chundawat, N. S., Chauhan, N. P. S. & Singh, G. P. (2020). Synth. Commun. 50, 1251–1285.
  28. Popiołek, Ł. (2021). Int. J. Mol. Sci. 22, 9389. [DOI] [PMC free article] [PubMed]
  29. Popiołek, Ł., Tuszyńska, K. & Biernasiuk, A. (2022). Biomed. Pharmacother. 153, 113302. [DOI] [PubMed]
  30. Quaeyhaegens, F., Desseyn, H. O., Bracke, B. & Lenstra, A. T. H. (1990). J. Mol. Struct. 238, 139–157.
  31. Ran, X., Zhang, P., Qu, S., Wang, H., Bai, B., Liu, H., Zhao, C. & Li, M. (2011). Langmuir, 27, 3945–3951. [DOI] [PubMed]
  32. Rigaku, OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  33. Shalini, Johansen, M. D., Kremer, L. & Kumar, V. (2019). Chem. Biol. Drug Des. 94, 1300–1305. [DOI] [PubMed]
  34. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  35. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  36. Singh, D. P., Allam, B. K., Singh, K. N. & Singh, V. P. (2014). RSC Adv. 4, 1155–1158.
  37. Singh, D. P., Allam, B. K., Singh, R., Singh, K. N. & Singh, V. P. (2016). RSC Adv. 6, 15518–15524.
  38. Singh, D. P., Raghuvanshi, D. S., Singh, K. N. & Singh, V. P. (2013). J. Mol. Catal. A Chem. 379, 21–29.
  39. Szimhardt, N. & Stierstorfer, J. (2018). Chem. A Eur. J. 24, 2687–2698. [DOI] [PubMed]
  40. Walcourt, A., Loyevsky, M., Lovejoy, D. B., Gordeuk, V. R. & Richardson, D. R. (2004). Int. J. Biochem. & Cell. Biol. 36, 401–407. [DOI] [PubMed]
  41. Witusik-Perkowska, M., Głowacka, P., Pieczonka, A. M., Świderska, E., Pudlarz, A., Rachwalski, M., Szymańska, J., Zakrzewska, M., Jaskólski, D. J. & Szemraj, J. (2023). Cells, 12, 1906. [DOI] [PMC free article] [PubMed]
  42. Wu, B. (2021). CSD Communication (CCDC 2079326, refcode EREQOK). CCDC, Cambridge, England.
  43. Xu, Y., Lin, Q., Wang, P. & Lu, M. (2018). Chem. Asian J. 13, 924–928. [DOI] [PubMed]
  44. Zhu, L.-N., Li, C.-Q., Li, X.-Z. & Li, R. (2006). Acta Cryst. E62, o4603–o4605.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024000239/vm2294sup1.cif

e-80-00148-sup1.cif (109.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000239/vm2294Isup4.hkl

e-80-00148-Isup4.hkl (103.7KB, hkl)

CCDC reference: 2323887

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES