Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jan 26;80(Pt 2):201–206. doi: 10.1107/S2056989024000574

(E)-N,N-Diethyl-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}aniline: crystal structure, Hirshfeld surface analysis and energy framework

A Subashini a,*, R Kumaravel b, B Tharmalingam c, K Ramamurthi d, Aurélien Crochet e, Helen Stoeckli-Evans f,*
Editor: W T A Harrisong
PMCID: PMC10848986  PMID: 38333113

In the title com­pound, a benzyl­ideneaniline Schiff base, the planes of the p-substituted aromatic rings subtend a dihedral angle of 46.01 (6)°.

Keywords: crystal structure, benzyl­ideneaniline, Schiff base, Hirshfeld surface analysis, energy framework

Abstract

In the title benzyl­ideneaniline Schiff base, C18H22N2O, the aromatic rings are inclined to each other by 46.01 (6)°, while the Car—N= C—Car torsion angle is 176.9 (1)°. In the crystal, the only identifiable directional inter­action is a weak C—H⋯π hydrogen bond, which generates inversion dimers that stack along the a-axis direction.

1. Chemical context

Schiff bases are known for their distinctive azomethine group (–N=CH–) and ease of synthesis, often by a simple condensation reaction. Brodowska & Łodyga-Chruścińska (2014, and references therein) have reviewed Schiff bases, covering their biological, anti­bacterial, anti­tfungal, biocidal, anti­malarial and anti­cancer activities, together with their uses in technology, synthesis and chemical analysis. The –N=CH– group plays an important role in forming stable metal com­plexes (Iqbal et al., 1995), and recently Boulechfar et al. (2023) have reviewed the history, synthesis and applications of Schiff bases and their metal com­plexes. 1.

In the solid state, benzyl­ideneanilines adopt a nonplanar conformation, disrupting the π-electron conjugation within the mol­ecule (Bürgi & Dunitz, 1970). Beyond their chemical properties, benzyl­ideneanilines find practical uses in various applications, such as plaque imaging, as anti-inflammatory agents, and in opto-electronic devices (Lee et al., 2009; Weszka et al., 2008; Rodrigues et al., 2003), and as anti­oxidants (Sunil et al., 2021).

Herein, we describe the synthesis and crystal structure of the title benzyl­ideneaniline Schiff base (E)-N,N-diethyl-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}aniline (I) and com­pare its structure and Hirshfeld surface to those of related com­pounds.

2. Structural commentary

The title com­pound crystallizes in the triclinic space group P Inline graphic with one mol­ecule in the asymmetric unit (Fig. 1). The aromatic rings (A = C1–C6 and B = C8–C13) are inclined to each other by 46.01 (6)°, while the C4—N1—C7—C8 torsion angle is 176.9 (1)°. The configuration about the N1=C7 bond is E and its bond length is 1.2754 (15) Å. The major twist in the mol­ecule occurs about the C4—N1 bond, as indicated by the C5—C4—N1—C7 torsion angle of −41.89 (16)°. Atom C14 of the meth­oxy group lies almost in the plane of its attached ring [deviation = −0.012 (1) Å]. The N2/C15/C17 moiety is twisted by 12.85 (12)° from its attached ring and the C atom of the C16 methyl group is displaced from the C8–C13 ring by 1.329 (2) Å and C18 is displaced in the opposite sense, by −0.893 (2) Å, which we term a trans arrangement (see Database survey section).

Figure 1.

Figure 1

A view of the mol­ecular structure of I, with the atom labelling. The displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of I, the shortest contact involves a pair of very weak C—H⋯π inter­actions (Table 1). They link inversion-related mol­ecules to form dimers that stack along the a-axis direction (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.94 2.98 3.659 (1) 130

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

A view along the b axis of the crystal packing of I. The C—H⋯π inter­actions are indicated by blue arrows (see Table 1). Only the H atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, last update September 2023; Groom et al., 2016) revealed the presence of two benzyl­ideneaniline Schiff bases similar to I, namely, (E)-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}-N,N-di­methyl­aniline (II) (CSD refcode SOLRIV; Sundararaman et al., 2009) and (E)-4-{[(4-eth­oxy­phen­yl)imino]­meth­yl}-N,N-di­methyl­aniline (III) (SITFIL; Wang & Wang, 2008).

Compound (II) crystallizes in the space group P21/n with two independent mol­ecules in the asymmetric unit. Here, the dihedral angles A/B and A′/B′ are significantly different to each other and to that in com­pound I, viz. 8.20 (5) and 12.52 (6)°, com­pared to 46.01 (6)° in I. The N=C bond lengths are 1.2758 (15) and 1.2731 (16) Å, similar to the value observed for I. The Car—N=C—Car torsion angles are −177.6 (1) and −179.3 (1)°, com­pared to 176.9 (1)° in I. In III, the aromatic rings are inclined to each other by 61.94 (15)°, while the torsion angle Car—N=C—Car is 179.3 (3)° and its bond length is 1.269 (4) Å.

A full search of the CSD for p-substituted benzyl­ideneanilines gave 229 hits for entries that fitted the following criteria: three-dimensional coordinates available, R ≤ 0.075, no disorder, no errors, no polymers, no ions, organics only and only single crystal analyses. An analysis using Mercury (Macrae et al., 2020) of the dihedral angle A/B indicated that it can vary from 0.9° for (E)-4-{4-[(4-chloro­benzyl­idene)amino]­benz­yl}oxazolidin-2-one (FORYIX; Kumari et al., 2019) to 73.4° for 4-[(E)-({4-[(4-amino­phen­yl)sulfon­yl]phen­yl}imino)­meth­yl]phenol ethanol solvate (PAWMUX; Afzal et al., 2012). There are two small clusters grouped around ca 6.3 and 51.6°. Compound II fits into the first cluster, whereas com­pounds I and III clearly fit into the second cluster.

The analysis of the N=C bond length indicates that it varies from 1.216 Å for 4-{[4-(di-p-tolyl­amino)­benzyl­idene]amino}­benzo­nitrile (JIDRAT; Sun et al., 2023) to 1.315 Å for (E)-4-[4-(di­ethyl­amino)­benzyl­idene­ammonio]­benzene­sulfonate (XAYSOH; Ruanwas et al., 2012), with a mean value of 1.269 Å [mean deviation of 0.013 Å, skewness −0.162; Mercury (Macrae et al., 2020)]. The C=N bond lengths in I, II and III all fall within the limits indicated from the analysis in Mercury.

Another structural feature of com­pound I is the arrangement of the ethyl groups of the –N(C2H5)2 moiety. Here, they have a trans arrangement with one CH3 group directed above the plane of the –CH2—N—CH2– unit and the other below (Fig. 1). A search of the CSD for benzyl­ideneanilines with an N,N-di­ethyl­aniline group gave 12 hits. In nine of these structures the arrangement of this group was the same as that of com­pound I, but for three hits an alternative arrangement was found, viz. a cis arrangement with both CH3 groups directed to the same side of the plane of the –CH2—N—CH2– unit. For example, in 4-chloro-N-[4-(di­ethyl­amino)­benzyl­idene]aniline (DUNNAC; Zhang, 2010), which crystallizes with two independent mol­ecules in the asymmetric unit, both mol­ecules have the cis arrangement [Fig. S1(a) of the supporting information]. In the 4-bromo derivative, 4-bromo-N-[4-(di­ethyl­amino)­benzyl­idene]aniline (SABPOC; Li, 2010), which also crystallizes with two independent mol­ecules in the asymmetric unit, both arrangements are observed; i.e. one trans and the other cis [Fig. S1(b) of the supporting information]. For 4-{[4-(di­ethyl­amino)­benzyl­idene]amino}­benzoic acid, two triclinic polymorphs have been reported, with both structures having two independent mol­ecules in the asymmetric unit. In the first (PUSMUN; Han et al., 2016), both mol­ecules have a cis arrangement, while in the second polymorph (PUSMUN01; Xochicale-Santana et al., 2021), both mol­ecules have a trans arrangement.

A more extensive search for di­ethyl­amino­benzene derivatives gave over 300 hits for structures with the same search criteria as above. An analysis of the two CH3—CH2—N—CH2 torsion angles is shown in a scatter plot (Fig. 3). It can be seen that the majority of com­pounds have either the cis (−/+ or +/−) or the trans (+/+ or −/−) arrangement. Some of the outliers indicate an inter­mediate state with one large torsion angle and the other quite small, for example, (2-di­ethyl­amino­phen­yl)di­phenyl­methanol (ERONDO; Al-Masri et al., 2004), whose structure is illustrated in Fig. 3. Finally, in one com­pound, viz. N,N,N′,N′-tetra­ethyl-2,6-bis­(phenyl­ethyn­yl)thieno[2,3-f][1]benzo­thio­phene-4,8-di­amine (JOQZIA; Wen et al., 2015), a unique arrangement was observed with both ethyl groups having an extended conformation (see Fig. 3).

Figure 3.

Figure 3

Scatter plot of the CH2—N—CH2—CH3 torsion angles in di­ethyl­amino­benzene derivatives, and the structures of N,N,N′,N′-tetra­ethyl-2,6-bis­(phenyl­ethyn­yl)thieno[2,3-f][1]benzo­thio­phene-4,8-di­amine (JOQZIA; Wen et al., 2015) and 2-di­ethyl­amino­phen­yl)di­phenyl­methanol (ERONDO; Al-Masri et al., 2004).

5. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface (HS) analyses and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17 (Spackman et al., 2021) following the protocol of Tan et al. (2019). The Hirshfeld surfaces for com­pounds I, II and III are com­pared in Fig. 4. The absence of promient red spots indicate that short contacts are not particularly significant in the packing of the three com­pounds. The short contacts in the crystals of the three com­pounds are com­pared in Table S1 of the supporting information. It is not surprising that for II, with a total of seven C—H⋯π inter­actions in the crystal (Sundararaman et al., 2009), that there are a large number of C⋯H contacts.

Figure 4.

Figure 4

The Hirshfeld surfaces of com­pounds (a) I, (b) II and (c) III, mapped over d norm in the colour ranges of 0.00 to 1.41, −0.08 to 1.26 and −0.02 to 1.22 a.u., respectively.

The full two-dimensional fingerprint plots for I, II and III are given in Fig. 5. The contributions of the various inter­atomic contacts to the Hirshfeld surfaces for the three com­pounds are com­pared in Table 2. In all three com­pounds, the H⋯H contacts have a major contribution, i.e. 62.5% for I, 58.1% for the two independent mol­ecule of II and 59.5% for III. The second most significant contributions are from the C⋯H/H⋯C contacts, 26.6, 29.4 and 29.8%, respectively, reflecting the presence of C—H⋯π inter­actions present in all three crystal structures. The other inter­atomic contacts, such as the N⋯H/H⋯N contacts, contribute from 5.1 to 6.3%, and the O⋯H/H⋯O contacts contribute from 4.6 to 6.0%. The C⋯C or O⋯O contacts contribute less than 1%.

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for com­pounds (a) I, (b) II and (c) III, and those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and O⋯H/H⋯O contacts.

Table 2. Relative percentage contributions of close contacts to the Hirshfeld surfaces of com­pounds I, II and III .

IIa and IIb refer to the two independent mol­ecules of com­pound II.

Contact I II IIa IIb III
H⋯H 62.5 58.1 53.9 55.2 59.5
C⋯H/H⋯C 26.6 29.4 34.3 32.0 29.8
N⋯H/H⋯N 5.1 6.3 5.6 6.5 5.9
O⋯H/H⋯O 5.4 6.0 6.0 6.2 4.6

6. Energy frameworks

A com­parison of the energy frameworks calculated for I, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot), are shown in Fig. 6. Those for com­pounds II and III are given, respectively, in Figs. S3 and S4 of the supporting information. The energies were obtained by using wave functions at the HF/3-2IG level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Spackman et al., 2021; Tan et al., 2019). They have been adjusted to the same scale factor of 90 with a cut-off value of 6 kJ mol−1 within a radius of 3.8 Å of a central reference mol­ecule.

Figure 6.

Figure 6

The energy frameworks calculated for I, viewed along the b-axis direction, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot).

For all three com­pounds, the major contribution to the inter­molecular inter­actions is from dispersion forces (E dis), reflecting the absence of C—H⋯O or C—H⋯N hydrogen bonds in the crystals. The colour-coded inter­action mappings within a radius of 3.8 Å of a central reference mol­ecule and the various contributions to the total energy (E tot) for com­pounds I, II and III are given in Figs. S5, S6 and S7, respectively, of the supporting information.

7. Synthesis and crystallization

Compound I was synthesized by condensing p-di­ethyl­amino­benzaldehyde and p-meth­oxy­aniline (1:1) dissolved in methanol. The reaction mixture was heated under reflux for 6 h at ∼363 K and then cooled to room temperature. The precipitated product was dissolved in methanol. Yellow prismatic single crystals of I were obtained by slow evaporation of the solvent at room temperature over a period of ca 15 d.

A Shimadzu IR Affinity-1 Fourier transform infrared (FT–IR) spectrometer was used to record the FT–IR spectrum of I using the KBr pellet technique in the range 400–4000 cm−1 (Fig. S8 of the supporting information). The absorption band at 1603 cm−1 confirms the formation of the C=N groups. The aromatic ring C=C stretching vibrations are observed in the range 1468–1585 cm−1. The aromatic C—H in-plane bending modes are observed in the region 1005–1292 cm−1, whereas the out-of-plane bending modes are observed in the range 762–973 cm−1.

The 1H and 13C nuclear magnetic resonance (NMR) spectra of com­pound I (Fig. S9 of the supporting information) were recorded using a Bruker Advance Neo 400 MHz NMR spectrometer. Deuterated chloro­form (CDCl3-d) was employed as the solvent, with tetra­methyl­silane (TMS) serving as the inter­nal standard. In the 1H NMR spectrum of I, the singlet peak at 8.30 ppm is attributed to the azomethine (–N=CH–) proton, while signals observed at 7.73, 7.18, 7.16 and 6.89 ppm are attributed to the aromatic protons. Additionally, there are sharp singlet peaks at 3.80 ppm, corresponding to the meth­oxy protons (O—CH3). The protons of the di­ethyl­amino group were detected at 1.19 ppm as a triplet (CH3) and at 3.41 ppm as a quartet (CH2). In the 13C NMR spectrum of I, the resonance at 158.70 ppm signifies the presence of the azomethine (–N=CH–) unit, 55.51 ppm is associated with the CH3—O group, 44.51 ppm is related to the methyl­ene C atoms of the (CH3CH2)2—N group and 12.62 ppm corresponds to the methyl C atoms of the (CH3CH2)2—N group.

An SDT Q600 V20.9 Build 20 TA instrument were used to measure the thermogravimetric analysis (TGA) and the differential thermal analysis (DTA) in the temperature range 303–723 K (Fig. S10 of the supporting information) with a heating rate of 20 K min−1. A small peak observed at ∼377 K (Fig. S10) in the DTA curve corresponds to the melting point of the material. The material is stable up to 483 K, after which it starts to decom­pose.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.94–0.98 Å and U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C18H22N2O
M r 282.37
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 250
a, b, c (Å) 8.3830 (7), 9.2872 (7), 11.2981 (9)
α, β, γ (°) 78.991 (6), 71.009 (6), 74.174 (6)
V3) 795.14 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.68 × 0.47 × 0.28
 
Data collection
Diffractometer STOE IPDS II
Absorption correction Multi-scan [X-RED32 (Stoe & Cie, 2018) and X-AREA LANA (Stoe & Cie, 2018)]
T min, T max 0.697, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 11520, 3183, 2453
R int 0.030
(sin θ/λ)max−1) 0.622
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.100, 1.04
No. of reflections 3183
No. of parameters 194
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.10

Computer programs: X-AREA , X-RED32 and X-AREA LANA (Stoe & Cie, 2018), SHELXT2014 (Sheldrick, 2015a ), PLATON (Spek, 2020), Mercury (Macrae et al., 2020), SHELXL2018 (Sheldrick, 2015b ) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989024000574/hb8091sup1.cif

e-80-00201-sup1.cif (353KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000574/hb8091Isup2.hkl

e-80-00201-Isup2.hkl (254.2KB, hkl)

Table S1. Short contacts in the crystal structures of com­pounds I, II and III. Figs. S1-S10. Energy frameworks and FTIR, NMR and DSC and TGA data. DOI: 10.1107/S2056989024000574/hb8091sup3.pdf

e-80-00201-sup3.pdf (961.8KB, pdf)

Supporting information file. DOI: 10.1107/S2056989024000574/hb8091Isup4.cml

CCDC reference: 2325829

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the School of Advanced Sciences, Vellore Institute of Technology, Vellore, for the use of their instrumentation facilities, such as FT–IR and thermal analyses. HSE is grateful to the University of Neuchâtel for their support over the years.

supplementary crystallographic information

Crystal data

C18H22N2O Z = 2
Mr = 282.37 F(000) = 304
Triclinic, P1 Dx = 1.179 Mg m3
a = 8.3830 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2872 (7) Å Cell parameters from 8317 reflections
c = 11.2981 (9) Å θ = 1.9–26.6°
α = 78.991 (6)° µ = 0.07 mm1
β = 71.009 (6)° T = 250 K
γ = 74.174 (6)° Prism, yellow
V = 795.14 (12) Å3 0.68 × 0.47 × 0.28 mm

Data collection

STOE IPDS II diffractometer 3183 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2453 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.030
Detector resolution: 6.67 pixels mm-1 θmax = 26.2°, θmin = 1.9°
rotation method, ω scans h = −10→10
Absorption correction: multi-scan [X-RED32 (Stoe & Cie, 2018) and X-AREA LANA (Stoe & Cie, 2018)] k = −11→11
Tmin = 0.697, Tmax = 0.989 l = −13→14
11520 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.076P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3183 reflections Δρmax = 0.11 e Å3
194 parameters Δρmin = −0.10 e Å3
0 restraints Extinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.06 (1)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.90654 (10) 0.86089 (9) 0.06035 (8) 0.0546 (2)
N1 0.34566 (12) 0.58694 (11) 0.23619 (9) 0.0508 (3)
N2 −0.20580 (13) 0.16536 (11) 0.38486 (9) 0.0527 (3)
C1 0.77767 (14) 0.78348 (12) 0.10357 (10) 0.0454 (3)
C2 0.61011 (15) 0.87089 (12) 0.12118 (11) 0.0502 (3)
H2 0.591811 0.976243 0.103921 0.060*
C3 0.47095 (15) 0.80443 (13) 0.16366 (11) 0.0513 (3)
H3 0.358218 0.865153 0.176449 0.062*
C4 0.49434 (14) 0.64815 (12) 0.18812 (10) 0.0462 (3)
C5 0.66201 (14) 0.56221 (12) 0.17208 (11) 0.0490 (3)
H5 0.680241 0.456927 0.190073 0.059*
C6 0.80332 (14) 0.62806 (12) 0.13011 (11) 0.0486 (3)
H6 0.915970 0.567772 0.119672 0.058*
C7 0.34757 (14) 0.46457 (13) 0.19969 (10) 0.0491 (3)
H7 0.446601 0.421105 0.138215 0.059*
C8 0.20522 (14) 0.38883 (12) 0.24788 (10) 0.0459 (3)
C9 0.05732 (14) 0.43984 (12) 0.34505 (10) 0.0470 (3)
H9 0.049892 0.525924 0.380601 0.056*
C10 −0.07673 (14) 0.36818 (12) 0.38981 (11) 0.0474 (3)
H10 −0.173924 0.406192 0.455066 0.057*
C11 −0.07201 (14) 0.23796 (12) 0.33985 (10) 0.0445 (3)
C12 0.07565 (15) 0.18844 (13) 0.24069 (11) 0.0519 (3)
H12 0.083149 0.103674 0.203407 0.062*
C13 0.20913 (15) 0.26207 (13) 0.19749 (11) 0.0520 (3)
H13 0.306292 0.225458 0.131648 0.062*
C14 1.07994 (16) 0.77581 (15) 0.04265 (14) 0.0675 (4)
H14A 1.106339 0.705115 −0.017850 0.101*
H14B 1.093169 0.721030 0.122330 0.101*
H14C 1.158592 0.843244 0.011381 0.101*
C15 −0.20452 (17) 0.03482 (13) 0.33003 (12) 0.0570 (3)
H15A −0.153911 0.050389 0.238532 0.068*
H15B −0.324234 0.027042 0.346349 0.068*
C16 −0.1037 (2) −0.11202 (15) 0.38128 (16) 0.0778 (4)
H16A −0.152434 −0.128065 0.471944 0.117*
H16B 0.016571 −0.107421 0.361391 0.117*
H16C −0.110656 −0.194522 0.343312 0.117*
C17 −0.34025 (16) 0.19415 (14) 0.50416 (11) 0.0563 (3)
H17A −0.297730 0.241588 0.554642 0.068*
H17B −0.362182 0.097789 0.551020 0.068*
C18 −0.50769 (18) 0.29363 (18) 0.48748 (15) 0.0770 (4)
H18A −0.551352 0.247013 0.438293 0.115*
H18B −0.488023 0.390729 0.443997 0.115*
H18C −0.591789 0.307371 0.569374 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0506 (5) 0.0498 (5) 0.0639 (5) −0.0138 (4) −0.0168 (4) −0.0036 (4)
N1 0.0456 (6) 0.0515 (6) 0.0536 (6) −0.0091 (4) −0.0137 (4) −0.0055 (4)
N2 0.0531 (6) 0.0540 (6) 0.0532 (6) −0.0159 (5) −0.0113 (4) −0.0133 (4)
C1 0.0484 (6) 0.0478 (6) 0.0415 (6) −0.0113 (5) −0.0146 (5) −0.0054 (5)
C2 0.0542 (7) 0.0418 (6) 0.0536 (7) −0.0063 (5) −0.0176 (5) −0.0057 (5)
C3 0.0449 (6) 0.0499 (6) 0.0549 (7) −0.0006 (5) −0.0156 (5) −0.0090 (5)
C4 0.0447 (6) 0.0500 (6) 0.0429 (6) −0.0086 (5) −0.0125 (5) −0.0063 (5)
C5 0.0498 (7) 0.0429 (6) 0.0522 (6) −0.0072 (5) −0.0151 (5) −0.0045 (5)
C6 0.0433 (6) 0.0478 (6) 0.0514 (6) −0.0039 (5) −0.0150 (5) −0.0053 (5)
C7 0.0447 (6) 0.0547 (7) 0.0457 (6) −0.0067 (5) −0.0133 (5) −0.0065 (5)
C8 0.0458 (6) 0.0494 (6) 0.0424 (6) −0.0074 (5) −0.0154 (5) −0.0052 (5)
C9 0.0508 (7) 0.0436 (6) 0.0475 (6) −0.0077 (5) −0.0152 (5) −0.0099 (5)
C10 0.0463 (6) 0.0469 (6) 0.0457 (6) −0.0054 (5) −0.0099 (5) −0.0110 (5)
C11 0.0463 (6) 0.0452 (6) 0.0435 (6) −0.0077 (5) −0.0172 (5) −0.0052 (5)
C12 0.0559 (7) 0.0516 (6) 0.0503 (6) −0.0089 (5) −0.0146 (5) −0.0169 (5)
C13 0.0473 (6) 0.0591 (7) 0.0466 (6) −0.0063 (5) −0.0090 (5) −0.0155 (5)
C14 0.0482 (7) 0.0648 (8) 0.0862 (10) −0.0149 (6) −0.0186 (7) 0.0009 (7)
C15 0.0620 (8) 0.0554 (7) 0.0608 (7) −0.0179 (6) −0.0205 (6) −0.0118 (6)
C16 0.0840 (10) 0.0547 (8) 0.0908 (11) −0.0109 (7) −0.0250 (8) −0.0068 (7)
C17 0.0576 (7) 0.0601 (7) 0.0518 (7) −0.0212 (6) −0.0100 (5) −0.0065 (6)
C18 0.0587 (8) 0.0865 (10) 0.0785 (10) −0.0084 (7) −0.0123 (7) −0.0176 (8)

Geometric parameters (Å, º)

O1—C1 1.3669 (13) C9—H9 0.9400
O1—C14 1.4220 (14) C10—C11 1.4153 (15)
N1—C7 1.2754 (15) C10—H10 0.9400
N1—C4 1.4140 (14) C11—C12 1.4081 (16)
N2—C11 1.3716 (14) C12—C13 1.3756 (16)
N2—C15 1.4592 (14) C12—H12 0.9400
N2—C17 1.4639 (15) C13—H13 0.9400
C1—C6 1.3882 (16) C14—H14A 0.9700
C1—C2 1.3891 (15) C14—H14B 0.9700
C2—C3 1.3739 (16) C14—H14C 0.9700
C2—H2 0.9400 C15—C16 1.5158 (19)
C3—C4 1.3958 (16) C15—H15A 0.9800
C3—H3 0.9400 C15—H15B 0.9800
C4—C5 1.3868 (15) C16—H16A 0.9700
C5—C6 1.3859 (15) C16—H16B 0.9700
C5—H5 0.9400 C16—H16C 0.9700
C6—H6 0.9400 C17—C18 1.5025 (19)
C7—C8 1.4505 (16) C17—H17A 0.9800
C7—H7 0.9400 C17—H17B 0.9800
C8—C13 1.3907 (15) C18—H18A 0.9700
C8—C9 1.3997 (15) C18—H18B 0.9700
C9—C10 1.3678 (15) C18—H18C 0.9700
C1—O1—C14 117.48 (9) C12—C11—C10 116.55 (10)
C7—N1—C4 119.31 (10) C13—C12—C11 121.08 (10)
C11—N2—C15 121.61 (9) C13—C12—H12 119.5
C11—N2—C17 122.15 (9) C11—C12—H12 119.5
C15—N2—C17 115.20 (9) C12—C13—C8 122.25 (10)
O1—C1—C6 124.99 (10) C12—C13—H13 118.9
O1—C1—C2 115.67 (9) C8—C13—H13 118.9
C6—C1—C2 119.35 (10) O1—C14—H14A 109.5
C3—C2—C1 120.45 (10) O1—C14—H14B 109.5
C3—C2—H2 119.8 H14A—C14—H14B 109.5
C1—C2—H2 119.8 O1—C14—H14C 109.5
C2—C3—C4 121.04 (10) H14A—C14—H14C 109.5
C2—C3—H3 119.5 H14B—C14—H14C 109.5
C4—C3—H3 119.5 N2—C15—C16 113.41 (11)
C5—C4—C3 117.97 (10) N2—C15—H15A 108.9
C5—C4—N1 123.58 (10) C16—C15—H15A 108.9
C3—C4—N1 118.30 (10) N2—C15—H15B 108.9
C6—C5—C4 121.49 (10) C16—C15—H15B 108.9
C6—C5—H5 119.3 H15A—C15—H15B 107.7
C4—C5—H5 119.3 C15—C16—H16A 109.5
C5—C6—C1 119.68 (10) C15—C16—H16B 109.5
C5—C6—H6 120.2 H16A—C16—H16B 109.5
C1—C6—H6 120.2 C15—C16—H16C 109.5
N1—C7—C8 123.56 (11) H16A—C16—H16C 109.5
N1—C7—H7 118.2 H16B—C16—H16C 109.5
C8—C7—H7 118.2 N2—C17—C18 113.31 (11)
C13—C8—C9 116.81 (10) N2—C17—H17A 108.9
C13—C8—C7 120.93 (10) C18—C17—H17A 108.9
C9—C8—C7 122.25 (10) N2—C17—H17B 108.9
C10—C9—C8 121.97 (10) C18—C17—H17B 108.9
C10—C9—H9 119.0 H17A—C17—H17B 107.7
C8—C9—H9 119.0 C17—C18—H18A 109.5
C9—C10—C11 121.32 (10) C17—C18—H18B 109.5
C9—C10—H10 119.3 H18A—C18—H18B 109.5
C11—C10—H10 119.3 C17—C18—H18C 109.5
N2—C11—C12 121.94 (10) H18A—C18—H18C 109.5
N2—C11—C10 121.51 (10) H18B—C18—H18C 109.5
C14—O1—C1—C6 −0.78 (16) C7—C8—C9—C10 179.79 (10)
C14—O1—C1—C2 179.17 (10) C8—C9—C10—C11 0.15 (17)
O1—C1—C2—C3 179.63 (10) C15—N2—C11—C12 −1.67 (16)
C6—C1—C2—C3 −0.42 (16) C17—N2—C11—C12 166.16 (11)
C1—C2—C3—C4 −1.05 (17) C15—N2—C11—C10 177.40 (10)
C2—C3—C4—C5 2.01 (17) C17—N2—C11—C10 −14.76 (16)
C2—C3—C4—N1 177.64 (10) C9—C10—C11—N2 179.70 (10)
C7—N1—C4—C5 −41.89 (16) C9—C10—C11—C12 −1.18 (16)
C7—N1—C4—C3 142.74 (11) N2—C11—C12—C13 −179.49 (10)
C3—C4—C5—C6 −1.56 (17) C10—C11—C12—C13 1.38 (17)
N1—C4—C5—C6 −176.95 (10) C11—C12—C13—C8 −0.58 (18)
C4—C5—C6—C1 0.15 (17) C9—C8—C13—C12 −0.49 (17)
O1—C1—C6—C5 −179.19 (10) C7—C8—C13—C12 −179.59 (11)
C2—C1—C6—C5 0.86 (16) C11—N2—C15—C16 83.50 (15)
C4—N1—C7—C8 176.85 (10) C17—N2—C15—C16 −85.13 (14)
N1—C7—C8—C13 174.93 (11) C11—N2—C17—C18 102.52 (13)
N1—C7—C8—C9 −4.12 (17) C15—N2—C17—C18 −88.92 (13)
C13—C8—C9—C10 0.70 (16)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C13—H13···Cg1i 0.94 2.98 3.659 (1) 130

Symmetry code: (i) −x+1, −y+1, −z.

References

  1. Afzal, S., Akhter, Z. & Tahir, M. N. (2012). Acta Cryst. E68, o1789. [DOI] [PMC free article] [PubMed]
  2. Al-Masri, H. T., Sieler, J., Lönnecke, P., Blaurock, S., Domasevitch, K. & Hey-Hawkins, E. (2004). Tetrahedron, 60, 333–339.
  3. Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A., Lemaoui, T., Verma, R. & Benguerba, Y. (2023). Inorg. Chem. Commun. 150, 110451.
  4. Brodowska, K. & Łodyga-Chruścińska, E. (2014). CHEMIK, 68, 132–134.
  5. Bürgi, H. B. & Dunitz, J. D. (1970). Helv. Chim. Acta, 53, 1747–1764.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Han, T., Wei, W., Yuan, J., Duan, Y., Li, Y., Hu, L. & Dong, Y. (2016). Talanta, 150, 104–112. [DOI] [PubMed]
  8. Iqbal, M. Z., Farooq, H. M., Zaman, M. Q., Gulzar, A. & Shah, H. U. (1995). J. Anal. Appl. Pyrolysis, 35, 109–120.
  9. Kumari, R., Seera, R., De, A., Ranjan, R. & Guru Row, T. N. (2019). Cryst. Growth Des. 19, 5934–5944.
  10. Lee, H.-J., Jeong, J.-M., Rai, G., Lee, Y.-S., Chang, Y.-S., Kim, Y.-J., Kim, H.-W., Lee, D.-S., Chung, J.-K., Mook-Jung, I. & Lee, M.-C. (2009). Nucl. Med. Biol. 36, 107–116. [DOI] [PubMed]
  11. Li, X.-F. (2010). Acta Cryst. E66, o2417. [DOI] [PMC free article] [PubMed]
  12. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  13. Rodrigues, J. J. Jr, Misoguti, L., Nunes, F. D. C. R., Mendonça, C. R. & Zilio, S. C. (2003). Opt. Mater. 22, 235–240.
  14. Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o2155–o2156. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Stoe & Cie (2018). X-AREA, X-RED32 and X-AREA LANA. Stoe & Cie GmbH, Damstadt, Germany.
  20. Sun, H., Chen, S., Jin, J., Sun, R., Sun, J., Liu, D., Liu, Z., Zeng, J., Zhu, Y., Niu, J. & Lu, S. (2023). J. Photochem. Photobiol. Chem. 441, 114730–114745.
  21. Sundararaman, L., Ramu, H., Kandaswamy, R. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, o477. [DOI] [PMC free article] [PubMed]
  22. Sunil, K., Kumara, T. P. P., Kumar, B. A. & Patel, S. B. (2021). Pharm. Chem. J. 55, 46–53.
  23. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  24. Wang, Q. & Wang, D.-Q. (2008). Acta Cryst. E64, o51.
  25. Wen, S., Liu, J., Qiu, M., Li, Y., Zhu, D., Gu, C., Han, L. & Yang, R. (2015). RSC Adv. 5, 5875–5878.
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Weszka, J., Domanski, M., Jarzabek, B., Jurusik, J., Cisowski, J. & Burian, A. (2008). Thin Solid Films, 516, 3098–3104.
  28. Xochicale-Santana, L., López-Espejel, M., Jiménez-Pérez, V. M., Lara-Cerón, J., Gómez-Treviño, A., Waksman, N., Dias, H. V. R. & Muñoz-Flores, B. M. (2021). New J. Chem. 45, 17183–17189.
  29. Zhang, F.-G. (2010). Acta Cryst. E66, o382. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989024000574/hb8091sup1.cif

e-80-00201-sup1.cif (353KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024000574/hb8091Isup2.hkl

e-80-00201-Isup2.hkl (254.2KB, hkl)

Table S1. Short contacts in the crystal structures of com­pounds I, II and III. Figs. S1-S10. Energy frameworks and FTIR, NMR and DSC and TGA data. DOI: 10.1107/S2056989024000574/hb8091sup3.pdf

e-80-00201-sup3.pdf (961.8KB, pdf)

Supporting information file. DOI: 10.1107/S2056989024000574/hb8091Isup4.cml

CCDC reference: 2325829

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES