Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jan 19;80(Pt 2):166–168. doi: 10.1107/S205698902400046X

Synthesis and crystal structure of [1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene](iso­cyanato-κN)gold(I)

Abolghasem Bakhoda a,*
Editor: A S Batsanovb
PMCID: PMC10848990  PMID: 38333129

The title complex was synthesized by ligand metathesis from [1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene]gold(I) chloride and sodium cyanate in anhydrous tetra­hydro­furan and crystallized from toluene at 233 K as a neutral complex with the central Au atom di-coordinated by an N-heterocyclic carbene and an iso­cyanate, with a linear CAuNCO moiety.

Keywords: crystal structure, gold(I), iso­cyanate, N-heterocyclic carbene

Abstract

The title complex, [Au(NCO)(C27H36N2)], was synthesized by ligand metathesis from [1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene]gold(I) chloride and sodium cyanate in anhydrous tetra­hydro­furan and crystallized from toluene at 233 K in the ortho­rhom­bic space group P212121, as a neutral complex with the central Au atom di-coordinated by an N-heterocyclic carbene [Au—C = 1.963 (2) Å] and an iso­cyanate [Au—N 1.999 (2) Å] ligands, with a linear CAuNCO moiety. The crystal packing is consolidated by C—H⋯O hydrogen bonds.

1. Chemical context

Transition-metal complexes with N-heterocyclic carbene (NHC) ligands have been frequently used as ligands in inorganic and organometallic synthesis, chemical catalysis, and medicinal chemistry (Hopkinson et al. 2014; Collado et al., 2021). NHC complexes of gold are typically linear dicoord­inate AuI complexes, however, square-planar AuIII complexes are also known (Baron et al., 2017). The former, where the dicoordinate state of AuI is sterically and electronically stabilized by NHC ligands, have inter­esting bonding properties (Pyykkö, 2004) and are prospective as catalysts (Collado et al., 2021) and medicines (Dada et al., 2017). An important class of AuI compounds are those with pseudohalide anions, such as CN, SCN, N3 or NCO. In the present work, we attempted to synthesize an AuI–cyanato complex, (IPr)AuOCN, where IPr = 1,3-bis­(2,6-di-iso-propyl­phen­yl)imidazol-2-yl­idene, as no AuI–cyanato complex had been isolated and structurally characterized previously, while those of Cu and Ag are very rare (see Section 4). In the attempt, we reacted (IPr)AuCl with sodium cyanate in anhydrous THF, which yielded the title isocyanato complex (IPr)Au—N=C=O (1), as proven by X-ray crystallography. 1.

2. Structural commentary

Crystallographic results (Fig. 1) unambiguously show the presence of an iso­cyanate (rather than cyanate) ligand that is N-bonded to the Au atom, with a nearly linear Au1—N3—C28 angle of 173.8 (2)° and the bond lengths N3—C28 [1.130 (3) Å] and C28—O1 [1.210 (3) Å] in the normal ranges found for metal–iso­cyanates (see Section 4), of 1.11–1.15 and 1.18–1.23 Å, respectively. The Au atom coordination is also linear [C1—Au—N3 178.14 (11)°], the Au—N3 and Au—C1 bond lengths of 1.999 (2) and 1.963 (2) Å, respectively, are not unusual for iso­cyanate and carbene ligands in previously reported AuI complexes (listed in Section 4).

Figure 1.

Figure 1

The mol­ecular structure of (IPr)Au—N=C=O (1), showing atomic displacement ellipsoids at 50% probability.

The IR spectrum of 1 (ATR, Thermo Scientific Nicolet iS10 spectrometer) shows the asymmetric stretching frequency νNCO of 2234 cm−1, in good agreement with other iso­cyanate AuI complexes (see Section 4).

3. Supra­molecular features

In the crystal, discrete mol­ecules of 1 are oriented with their CAuNCO ‘rods’ roughly parallel to the crystallographic b axis, with no indication of π–π stacking. While di-coordinate AuI atoms (d 10 centers) often form attractive aurophilic Au⋯Au inter­actions, which play an important role in determining the solid-state structures of AuI complexes (Pyykkö, 1997), in the structure of 1 no such inter­actions occur, the closest Au⋯Au distance being 7.738 Å. This is probably due to effective shielding of the Au center by 2,6-di-iso-propyl­phenyl groups. The inter­molecular hydrogen bond C2—H2⋯O1(x, y + 1, z) is relatively strong, with the distances C⋯O 3.127 (3), C—H 0.94 (3), H⋯O 2.25 (3) Å and C—H⋯O angle of 155 (2)° (Fig. 2). The asymmetric unit of 1 contains only one mol­ecule.

Figure 2.

Figure 2

Crystal packing of 1 with hydrogen bonds shown as red dotted lines. Au atoms are shown in yellow, N in blue and O in red. H atoms except H2 and H3 are omitted for clarity.

4. Database survey

Structurally characterized cyanate complexes of Group 11 metals with M—O—C≡N core (M = Cu, Ag, Au) are very rare. In the literature, there are only six examples of copper cyanato complexes and only one example of a silver cyanato complex is known so far (CSD version 5.43, last update November 2023; Groom et al., 2016). Thus far, there is no example of an isolated and structurally characterized AuI–cyanato complex in the literature.

A search of the CSD (version 5.43, last update November 2023; Groom et al., 2016) using CONQUEST (Bruno et al., 2002) revealed four AuI–iso­cyanate coordination compounds, viz. (Ph3P)AuNCO (CSD refcode DUCRIC, Bosman et al. 1986), two complexes with the composition LAuNCO, where L is an NHC ligand, viz. 1,3-di-tert-butyl­imidazol-2-yl­idene or 1,3-dibenzyl-4,5-diphenyl-2,3-di­hydro-1H-imidazol-2-yl­idene (FAWZOT, Baker et al., 2005; LAMLIX, Dada et al., 2017), as well as one complex of the composition LAuNCO, where L is a cyclic(alk­yl)(amino)­carbene (QANMUQ; Romanov et al., 2017). The IR spectra of these show the characteristic νNCO bands at 2204, 2232, 2243 and 2229 cm−1, respectively.

5. Synthesis and crystallization

An aluminum-wrapped oven-dried 25-ml Schlenk flask was equipped with a stirring bar and charged with IPrAuCl, purchased from Strem (100 mg, 0.16 mmol) and sodium cyanate (52.6 mg, 0.81 mmol) under an anhydrous di­nitro­gen atmosphere inside a glovebox. Anhydrous THF (15 ml) was added, and the resulting suspension was stirred overnight at room temperature. The solvent was removed, the residue dissolved in anhydrous toluene and filtered through short pad of silica (1.5 cm). This filtration procedure proved crucial for the efficient removal of small amounts of impurities and increased the stability of the product. The colorless filtrate was concentrated and hexane was added to precipitate complex 1, the solvents were deca­nted off and the residue dried in vacuo. Yield: 36 mg, 36%. The product was recrystallized from a concentrated toluene solution at 233 K inside a di­nitro­gen-filled glovebox. 1H NMR (400 MHz, CDCl3): δ 7.51 (t, J = 8 Hz, 2H, CH aromatic), 7.31 (d, J = 8 Hz, 4H, CH aromatic), 7.20 (s, 2H, CH imidazole), 2.48 [sept, J = 7 Hz, 4H, CH(CH3)2], 1.30 [d, J = 7 Hz, 12H, CH(CH 3)2], 1.21 [d, J = 7 Hz, 12H, CH(CH 3)2]. 13C NMR (100 MHz, CDCl3): δ 183.4 (s, C carbene), 144.1 (s, C aromatic), 133.8 (s, C aromatic), 132.3 (s, NCO), 131.2 (s, CH imidazole), 123.9 (s, CH aromatic), 123.4 (s, CH aromatic), 29.8 [s, CH(CH3)2], 25.5 [s, CH(CH3)2], 24.0 [s, CH(CH3)2]. Analysis calculated for C28H36AuN3O: C, 53.59; H, 5.78; N, 6.70. Found: C, 53.58; H, 5.82; N, 6.52.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Atoms H2 and H3 were refined in an isotropic approximation. Other H atoms were treated as riding in idealized positions (for methyl groups, optimized by rotation about R—CH3 bonds) with U iso(H) = 1.5U eq for methyl H atoms, or 1.2U eq(C) for the rest.

Table 1. Experimental details.

Crystal data
Chemical formula [Au(NCO)(C27H36N2)]
M r 627.56
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 10.3941 (7), 11.1540 (7), 23.3489 (15)
V3) 2707.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.46
Crystal size (mm) 0.18 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest/Photon 100
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.512, 0.710
No. of measured, independent and observed [I > 2σ(I)] reflections 76237, 6680, 6610
R int 0.029
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.013, 0.025, 1.11
No. of reflections 6680
No. of parameters 315
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.31
Absolute structure Flack x determined using 2845 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.007 (2)

Computer programs: APEX3, SAINT, XPREP and XCIF (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2019/1 (Sheldrick, 2015b ) and ShelXle v932 (Hübschle et al., 2011).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902400046X/zv2031sup1.cif

e-80-00166-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902400046X/zv2031Isup5.hkl

e-80-00166-Isup5.hkl (530.9KB, hkl)

CCDC reference: 2306677

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

AB gratefully acknowledges financial support from Towson University through research grants from the Fisher College of Science and Mathematics (FCSM).

supplementary crystallographic information

Crystal data

[Au(NCO)(C27H36N2)] Dx = 1.540 Mg m3
Mr = 627.56 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9267 reflections
a = 10.3941 (7) Å θ = 2.6–28.3°
b = 11.1540 (7) Å µ = 5.46 mm1
c = 23.3489 (15) Å T = 100 K
V = 2707.0 (3) Å3 Prism, colourless
Z = 4 0.18 × 0.17 × 0.12 mm
F(000) = 1248

Data collection

Bruker D8 Quest/Photon 100 diffractometer 6680 independent reflections
Radiation source: microfocus sealed tube 6610 reflections with I > 2σ(I)
Multilayer mirrors monochromator Rint = 0.029
profile data from φ and ω scans θmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −13→13
Tmin = 0.512, Tmax = 0.710 k = −14→14
76237 measured reflections l = −31→31

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0022P)2 + 0.5084P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.025 (Δ/σ)max = 0.003
S = 1.11 Δρmax = 0.61 e Å3
6680 reflections Δρmin = −0.31 e Å3
315 parameters Extinction correction: SHELXL2019/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00303 (9)
Primary atom site location: dual Absolute structure: Flack x determined using 2845 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.007 (2)

Special details

Experimental. One distinct cell was identified using APEX3 (Bruker, 2016). Six frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2016) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2016) to sort, merge, and scale the combined data. No decay correction was applied.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Structure was phased by intrinsic methods (Sheldrick, 2015a). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au1 0.26753 (2) 0.23607 (2) 0.37741 (2) 0.01629 (3)
O1 0.2821 (2) −0.14249 (15) 0.41879 (9) 0.0378 (5)
N1 0.2343 (2) 0.49912 (15) 0.39199 (7) 0.0157 (4)
N2 0.2784 (2) 0.45853 (16) 0.30454 (7) 0.0151 (4)
N3 0.2667 (3) 0.06303 (19) 0.39972 (9) 0.0283 (5)
C1 0.2625 (2) 0.40636 (18) 0.35634 (9) 0.0148 (4)
C2 0.2332 (2) 0.6070 (2) 0.36284 (10) 0.0197 (5)
H2 0.221 (2) 0.680 (2) 0.3819 (10) 0.023 (7)*
C3 0.2606 (3) 0.58160 (19) 0.30804 (10) 0.0190 (5)
H3 0.270 (3) 0.629 (2) 0.2773 (10) 0.017 (6)*
C4 0.2132 (2) 0.4847 (2) 0.45287 (9) 0.0168 (5)
C5 0.0907 (2) 0.4478 (2) 0.47107 (11) 0.0193 (5)
C6 0.0742 (3) 0.4320 (2) 0.52988 (12) 0.0246 (6)
H6 −0.006924 0.406579 0.544201 0.029*
C7 0.1742 (3) 0.4528 (2) 0.56757 (11) 0.0267 (6)
H7 0.161106 0.441254 0.607458 0.032*
C8 0.2930 (3) 0.4900 (2) 0.54798 (10) 0.0259 (6)
H8 0.360466 0.503938 0.574613 0.031*
C9 0.3155 (2) 0.5077 (2) 0.48950 (10) 0.0208 (5)
C10 −0.0199 (2) 0.4307 (2) 0.42925 (12) 0.0229 (6)
H10 0.017665 0.416710 0.390388 0.027*
C11 −0.1042 (3) 0.3230 (3) 0.44407 (15) 0.0394 (8)
H11A −0.171818 0.314256 0.415116 0.059*
H11B −0.143619 0.335255 0.481746 0.059*
H11C −0.051310 0.250252 0.444865 0.059*
C12 −0.1010 (3) 0.5452 (3) 0.42656 (13) 0.0329 (7)
H12A −0.046152 0.612932 0.415753 0.049*
H12B −0.139480 0.560496 0.464170 0.049*
H12C −0.169343 0.535288 0.398019 0.049*
C13 0.4476 (3) 0.5458 (3) 0.46822 (11) 0.0264 (6)
H13 0.438282 0.567922 0.426931 0.032*
C14 0.4986 (3) 0.6556 (3) 0.49942 (12) 0.0413 (8)
H14A 0.581927 0.678645 0.483126 0.062*
H14B 0.509191 0.637001 0.540165 0.062*
H14C 0.437623 0.721984 0.495059 0.062*
C15 0.5423 (3) 0.4419 (3) 0.47129 (18) 0.0453 (9)
H15A 0.504052 0.370822 0.453394 0.068*
H15B 0.562278 0.424411 0.511450 0.068*
H15C 0.621502 0.463457 0.450996 0.068*
C16 0.3151 (2) 0.3971 (2) 0.25267 (10) 0.0171 (5)
C17 0.4467 (3) 0.3911 (2) 0.23968 (11) 0.0207 (6)
C18 0.4805 (3) 0.3365 (2) 0.18834 (11) 0.0270 (6)
H18 0.568715 0.330687 0.177981 0.032*
C19 0.3877 (3) 0.2906 (3) 0.15223 (11) 0.0293 (6)
H19 0.412772 0.254023 0.117211 0.035*
C20 0.2586 (3) 0.2971 (2) 0.16641 (10) 0.0266 (5)
H20 0.196098 0.264555 0.141130 0.032*
C21 0.2193 (3) 0.3511 (2) 0.21743 (10) 0.0205 (5)
C22 0.5492 (3) 0.4415 (3) 0.27965 (12) 0.0259 (6)
H22 0.503778 0.484144 0.311436 0.031*
C23 0.6350 (4) 0.5327 (4) 0.24968 (15) 0.0524 (10)
H23A 0.681140 0.493551 0.218227 0.079*
H23B 0.697090 0.565354 0.277140 0.079*
H23C 0.581895 0.597885 0.234403 0.079*
C24 0.6274 (4) 0.3407 (3) 0.30637 (17) 0.0595 (11)
H24A 0.679597 0.301835 0.276762 0.089*
H24B 0.569013 0.281642 0.323466 0.089*
H24C 0.683788 0.373548 0.336097 0.089*
C25 0.0776 (3) 0.3555 (3) 0.23361 (12) 0.0261 (6)
H25 0.068802 0.410186 0.267309 0.031*
C26 0.0316 (3) 0.2308 (3) 0.25208 (13) 0.0390 (7)
H26A 0.036322 0.175785 0.219407 0.059*
H26B −0.057475 0.235788 0.265587 0.059*
H26C 0.086646 0.200985 0.283054 0.059*
C27 −0.0068 (3) 0.4051 (3) 0.18560 (13) 0.0375 (8)
H27A 0.025228 0.484162 0.174054 0.056*
H27B −0.095587 0.412489 0.199211 0.056*
H27C −0.004031 0.350569 0.152718 0.056*
C28 0.2743 (3) −0.0363 (2) 0.40865 (10) 0.0218 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.01867 (5) 0.01490 (5) 0.01529 (4) 0.00074 (3) −0.00236 (3) 0.00049 (3)
O1 0.0479 (13) 0.0154 (9) 0.0502 (12) −0.0026 (9) 0.0055 (11) 0.0016 (8)
N1 0.0162 (10) 0.0178 (10) 0.0132 (9) 0.0007 (8) −0.0020 (8) −0.0020 (6)
N2 0.0162 (10) 0.0153 (9) 0.0137 (9) 0.0017 (9) −0.0004 (8) −0.0009 (7)
N3 0.0358 (14) 0.0224 (11) 0.0268 (11) 0.0023 (12) −0.0081 (11) 0.0032 (8)
C1 0.0122 (11) 0.0174 (10) 0.0148 (10) −0.0004 (10) −0.0013 (9) 0.0008 (8)
C2 0.0213 (12) 0.0143 (10) 0.0235 (12) 0.0016 (10) −0.0008 (11) −0.0022 (9)
C3 0.0213 (13) 0.0164 (11) 0.0192 (11) 0.0002 (11) −0.0006 (11) 0.0034 (9)
C4 0.0198 (12) 0.0179 (11) 0.0125 (10) 0.0034 (10) 0.0006 (9) −0.0020 (8)
C5 0.0163 (12) 0.0209 (13) 0.0208 (13) 0.0043 (10) 0.0011 (10) −0.0030 (10)
C6 0.0224 (15) 0.0298 (15) 0.0215 (14) 0.0038 (11) 0.0067 (11) −0.0012 (11)
C7 0.0326 (15) 0.0326 (16) 0.0149 (12) 0.0032 (12) 0.0035 (11) −0.0016 (11)
C8 0.0252 (14) 0.0341 (15) 0.0184 (12) 0.0012 (11) −0.0049 (10) −0.0032 (10)
C9 0.0204 (12) 0.0225 (14) 0.0194 (13) −0.0002 (10) −0.0014 (10) −0.0016 (10)
C10 0.0155 (12) 0.0300 (15) 0.0232 (14) 0.0001 (11) 0.0009 (10) −0.0024 (11)
C11 0.0345 (17) 0.0296 (16) 0.054 (2) −0.0079 (13) −0.0191 (15) 0.0070 (14)
C12 0.0256 (15) 0.0304 (16) 0.0425 (17) 0.0015 (12) −0.0100 (13) 0.0063 (13)
C13 0.0205 (13) 0.0397 (17) 0.0190 (13) −0.0062 (12) −0.0051 (11) 0.0025 (12)
C14 0.046 (2) 0.0443 (19) 0.0339 (19) −0.0176 (16) −0.0041 (15) 0.0028 (14)
C15 0.0194 (17) 0.048 (2) 0.068 (3) −0.0007 (15) 0.0118 (16) 0.0029 (18)
C16 0.0225 (12) 0.0167 (11) 0.0121 (11) 0.0022 (10) 0.0013 (9) 0.0012 (9)
C17 0.0229 (13) 0.0197 (13) 0.0194 (13) 0.0014 (11) 0.0024 (10) 0.0015 (10)
C18 0.0259 (15) 0.0301 (15) 0.0249 (14) 0.0052 (12) 0.0070 (11) 0.0020 (12)
C19 0.0391 (16) 0.0325 (16) 0.0163 (12) 0.0090 (12) 0.0028 (11) −0.0049 (11)
C20 0.0339 (15) 0.0279 (12) 0.0180 (11) 0.0044 (12) −0.0064 (11) −0.0050 (9)
C21 0.0233 (13) 0.0205 (11) 0.0176 (11) 0.0015 (11) −0.0019 (10) 0.0014 (9)
C22 0.0192 (14) 0.0299 (16) 0.0287 (15) −0.0010 (12) 0.0051 (11) −0.0059 (12)
C23 0.047 (2) 0.059 (2) 0.051 (2) −0.027 (2) 0.0122 (18) −0.0087 (19)
C24 0.060 (2) 0.047 (2) 0.071 (3) 0.0126 (18) −0.045 (2) −0.0157 (19)
C25 0.0215 (14) 0.0371 (17) 0.0198 (14) 0.0017 (12) −0.0026 (11) −0.0029 (12)
C26 0.0282 (14) 0.0491 (19) 0.0397 (16) −0.0129 (15) −0.0086 (12) 0.0063 (16)
C27 0.0280 (16) 0.054 (2) 0.0302 (17) 0.0101 (15) −0.0068 (13) −0.0018 (15)
C28 0.0220 (13) 0.0270 (14) 0.0163 (12) −0.0029 (12) 0.0008 (11) −0.0052 (9)

Geometric parameters (Å, º)

Au1—N3 1.999 (2) C14—H14A 0.9800
Au1—C1 1.963 (2) C14—H14B 0.9800
O1—C28 1.210 (3) C14—H14C 0.9800
N1—C1 1.360 (3) C15—H15A 0.9800
N1—C2 1.382 (3) C15—H15B 0.9800
N1—C4 1.447 (3) C15—H15C 0.9800
N2—C1 1.352 (3) C16—C17 1.402 (4)
N2—C3 1.387 (3) C16—C21 1.390 (3)
N2—C16 1.443 (3) C17—C18 1.390 (4)
N3—C28 1.130 (3) C17—C22 1.524 (4)
C2—H2 0.94 (3) C18—H18 0.9500
C2—C3 1.341 (3) C18—C19 1.380 (4)
C3—H3 0.89 (2) C19—H19 0.9500
C4—C5 1.404 (3) C19—C20 1.384 (4)
C4—C9 1.388 (3) C20—H20 0.9500
C5—C6 1.395 (4) C20—C21 1.396 (3)
C5—C10 1.520 (3) C21—C25 1.521 (4)
C6—H6 0.9500 C22—H22 1.0000
C6—C7 1.382 (4) C22—C23 1.523 (4)
C7—H7 0.9500 C22—C24 1.521 (4)
C7—C8 1.381 (4) C23—H23A 0.9800
C8—H8 0.9500 C23—H23B 0.9800
C8—C9 1.399 (3) C23—H23C 0.9800
C9—C13 1.521 (4) C24—H24A 0.9800
C10—H10 1.0000 C24—H24B 0.9800
C10—C11 1.527 (4) C24—H24C 0.9800
C10—C12 1.532 (4) C25—H25 1.0000
C11—H11A 0.9800 C25—C26 1.533 (4)
C11—H11B 0.9800 C25—C27 1.527 (4)
C11—H11C 0.9800 C26—H26A 0.9800
C12—H12A 0.9800 C26—H26B 0.9800
C12—H12B 0.9800 C26—H26C 0.9800
C12—H12C 0.9800 C27—H27A 0.9800
C13—H13 1.0000 C27—H27B 0.9800
C13—C14 1.521 (4) C27—H27C 0.9800
C13—C15 1.522 (4)
C1—Au1—N3 178.14 (11) H14A—C14—H14C 109.5
C1—N1—C2 111.26 (18) H14B—C14—H14C 109.5
C1—N1—C4 123.35 (18) C13—C15—H15A 109.5
C2—N1—C4 125.36 (18) C13—C15—H15B 109.5
C1—N2—C3 110.91 (18) C13—C15—H15C 109.5
C1—N2—C16 125.33 (18) H15A—C15—H15B 109.5
C3—N2—C16 123.69 (18) H15A—C15—H15C 109.5
C28—N3—Au1 173.8 (2) H15B—C15—H15C 109.5
N1—C1—Au1 126.05 (16) C17—C16—N2 117.5 (2)
N2—C1—Au1 129.61 (16) C21—C16—N2 118.8 (2)
N2—C1—N1 104.26 (17) C21—C16—C17 123.6 (2)
N1—C2—H2 121.6 (15) C16—C17—C22 122.1 (2)
C3—C2—N1 106.53 (19) C18—C17—C16 117.0 (2)
C3—C2—H2 131.7 (15) C18—C17—C22 120.8 (2)
N2—C3—H3 121.3 (15) C17—C18—H18 119.6
C2—C3—N2 107.05 (19) C19—C18—C17 120.8 (3)
C2—C3—H3 131.7 (15) C19—C18—H18 119.6
C5—C4—N1 117.9 (2) C18—C19—H19 119.6
C9—C4—N1 117.9 (2) C18—C19—C20 120.8 (2)
C9—C4—C5 124.2 (2) C20—C19—H19 119.6
C4—C5—C10 121.9 (2) C19—C20—H20 119.6
C6—C5—C4 116.5 (2) C19—C20—C21 120.7 (2)
C6—C5—C10 121.5 (2) C21—C20—H20 119.6
C5—C6—H6 119.6 C16—C21—C20 117.0 (2)
C7—C6—C5 120.9 (3) C16—C21—C25 122.3 (2)
C7—C6—H6 119.6 C20—C21—C25 120.6 (2)
C6—C7—H7 119.6 C17—C22—H22 107.4
C8—C7—C6 120.8 (2) C23—C22—C17 112.0 (2)
C8—C7—H7 119.6 C23—C22—H22 107.4
C7—C8—H8 119.5 C24—C22—C17 110.6 (2)
C7—C8—C9 121.0 (2) C24—C22—H22 107.4
C9—C8—H8 119.5 C24—C22—C23 111.7 (3)
C4—C9—C8 116.6 (2) C22—C23—H23A 109.5
C4—C9—C13 122.8 (2) C22—C23—H23B 109.5
C8—C9—C13 120.6 (2) C22—C23—H23C 109.5
C5—C10—H10 107.9 H23A—C23—H23B 109.5
C5—C10—C11 112.8 (2) H23A—C23—H23C 109.5
C5—C10—C12 109.8 (2) H23B—C23—H23C 109.5
C11—C10—H10 107.9 C22—C24—H24A 109.5
C11—C10—C12 110.4 (2) C22—C24—H24B 109.5
C12—C10—H10 107.9 C22—C24—H24C 109.5
C10—C11—H11A 109.5 H24A—C24—H24B 109.5
C10—C11—H11B 109.5 H24A—C24—H24C 109.5
C10—C11—H11C 109.5 H24B—C24—H24C 109.5
H11A—C11—H11B 109.5 C21—C25—H25 107.7
H11A—C11—H11C 109.5 C21—C25—C26 110.0 (2)
H11B—C11—H11C 109.5 C21—C25—C27 112.7 (2)
C10—C12—H12A 109.5 C26—C25—H25 107.7
C10—C12—H12B 109.5 C27—C25—H25 107.7
C10—C12—H12C 109.5 C27—C25—C26 110.9 (2)
H12A—C12—H12B 109.5 C25—C26—H26A 109.5
H12A—C12—H12C 109.5 C25—C26—H26B 109.5
H12B—C12—H12C 109.5 C25—C26—H26C 109.5
C9—C13—H13 107.2 H26A—C26—H26B 109.5
C9—C13—C15 110.8 (2) H26A—C26—H26C 109.5
C14—C13—C9 112.6 (2) H26B—C26—H26C 109.5
C14—C13—H13 107.2 C25—C27—H27A 109.5
C14—C13—C15 111.4 (3) C25—C27—H27B 109.5
C15—C13—H13 107.2 C25—C27—H27C 109.5
C13—C14—H14A 109.5 H27A—C27—H27B 109.5
C13—C14—H14B 109.5 H27A—C27—H27C 109.5
C13—C14—H14C 109.5 H27B—C27—H27C 109.5
H14A—C14—H14B 109.5 N3—C28—O1 179.3 (3)
N1—C2—C3—N2 −0.1 (3) C5—C6—C7—C8 0.2 (4)
N1—C4—C5—C6 178.5 (2) C6—C5—C10—C11 −40.7 (4)
N1—C4—C5—C10 −3.9 (3) C6—C5—C10—C12 82.9 (3)
N1—C4—C9—C8 −178.4 (2) C6—C7—C8—C9 −0.1 (4)
N1—C4—C9—C13 −0.5 (4) C7—C8—C9—C4 −0.5 (4)
N2—C16—C17—C18 −177.2 (2) C7—C8—C9—C13 −178.5 (3)
N2—C16—C17—C22 3.0 (4) C8—C9—C13—C14 −51.9 (3)
N2—C16—C21—C20 177.1 (2) C8—C9—C13—C15 73.7 (3)
N2—C16—C21—C25 −4.4 (3) C9—C4—C5—C6 −1.0 (4)
C1—N1—C2—C3 0.2 (3) C9—C4—C5—C10 176.5 (2)
C1—N1—C4—C5 −82.3 (3) C10—C5—C6—C7 −177.2 (2)
C1—N1—C4—C9 97.3 (3) C16—N2—C1—Au1 −6.1 (4)
C1—N2—C3—C2 0.0 (3) C16—N2—C1—N1 177.3 (2)
C1—N2—C16—C17 −91.9 (3) C16—N2—C3—C2 −177.2 (2)
C1—N2—C16—C21 90.3 (3) C16—C17—C18—C19 0.0 (4)
C2—N1—C1—Au1 −177.09 (17) C16—C17—C22—C23 −124.0 (3)
C2—N1—C1—N2 −0.3 (3) C16—C17—C22—C24 110.7 (3)
C2—N1—C4—C5 100.1 (3) C16—C21—C25—C26 −105.2 (3)
C2—N1—C4—C9 −80.3 (3) C16—C21—C25—C27 130.5 (3)
C3—N2—C1—Au1 176.85 (18) C17—C16—C21—C20 −0.4 (4)
C3—N2—C1—N1 0.2 (3) C17—C16—C21—C25 178.1 (2)
C3—N2—C16—C17 84.8 (3) C17—C18—C19—C20 −0.4 (4)
C3—N2—C16—C21 −92.9 (3) C18—C17—C22—C23 56.1 (4)
C4—N1—C1—Au1 5.0 (4) C18—C17—C22—C24 −69.2 (4)
C4—N1—C1—N2 −178.2 (2) C18—C19—C20—C21 0.4 (4)
C4—N1—C2—C3 178.1 (2) C19—C20—C21—C16 0.0 (4)
C4—C5—C6—C7 0.3 (4) C19—C20—C21—C25 −178.5 (2)
C4—C5—C10—C11 141.9 (3) C20—C21—C25—C26 73.2 (3)
C4—C5—C10—C12 −94.5 (3) C20—C21—C25—C27 −51.1 (3)
C4—C9—C13—C14 130.3 (3) C21—C16—C17—C18 0.4 (4)
C4—C9—C13—C15 −104.1 (3) C21—C16—C17—C22 −179.4 (2)
C5—C4—C9—C8 1.1 (4) C22—C17—C18—C19 179.8 (3)
C5—C4—C9—C13 179.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.94 (3) 2.25 (3) 3.127 (3) 155 (2)

Symmetry code: (i) x, y+1, z.

Funding Statement

Funding for this research was provided by: National Science Foundation (grant No. 0923051).

References

  1. Baker, M. V., Barnard, P. J., Brayshaw, S. K., Hickey, J. L., Skelton, B. W. & White, A. H. (2005). Dalton Trans. pp. 37–43. [DOI] [PubMed]
  2. Baron, M., Tubaro, C., Cairoli, M. L. C., Orian, L., Bogialli, S., Basato, M., Natile, M. M. & Graiff, C. (2017). Organometallics, 36, 2285–2292.
  3. Bosman, W. P., Bos, W., Smits, J. M. M., Beurskens, P. T., Bour, J. J. & Steggerda, J. J. (1986). Inorg. Chem. 25, 2093–2096.
  4. Bruker (2016). APEX3, SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.
  5. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  6. Collado, A., Nelson, D. J. & Nolan, S. P. (2021). Chem. Rev. 121, 8559–8612. [DOI] [PubMed]
  7. Dada, O., Curran, D., O’Beirne, C., Müller-Bunz, H., Zhu, X. & Tacke, M. (2017). J. Organomet. Chem. 840, 30–37.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496. [DOI] [PubMed]
  10. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Pyykkö, P. (1997). Chem. Rev. 97, 597–636. [DOI] [PubMed]
  14. Pyykkö, P. (2004). Angew. Chem. Int. Ed. 43, 4412–4456. [DOI] [PubMed]
  15. Romanov, A. S., Becker, C. R., James, C. E., Di, D., Credgington, D., Linnolahti, M. & Bochmann, M. (2017). Chem. Eur. J. 23, 4625–4637. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902400046X/zv2031sup1.cif

e-80-00166-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902400046X/zv2031Isup5.hkl

e-80-00166-Isup5.hkl (530.9KB, hkl)

CCDC reference: 2306677

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES