Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Jan;41(1):143–147. doi: 10.1104/pp.41.1.143

Rate of Glycolate Formation During Photosynthesis at High pH 1

Gertrude M Orth 1,2, N E Tolbert 1, Eduardo Jimenez 1,3
PMCID: PMC1086311  PMID: 16656223

Abstract

The products of C14O2 fixation by Chlamydomonas and Chlorella were studied under conditions most favorable for glycolate synthesis. The highest percentage of the C14 was incorporated into glycolate in the pH range of 8 to 9. After 1 to 2 minutes as much as 40% of the C14 was found in glycolate products and only a trace of C14 was present as phosphoglycerate. Below pH 8 the rate of photosynthesis was much faster, but only a small percent of the C14 was incorporated into glycolate in 1 or 2 minutes, while a high percent of the C14 accumulated in phosphoglycerate. C14 labeling of glycolate even at pH 8 or above did not occur at times shorter than 10 seconds. During the first seconds of photosynthesis, nearly all of the C14 was found in phosphoglycerate and sugar phosphates. Thus glycolate appears to be formed after the phosphate esters of the photosynthetic carbon cycle.

Washing Chlamydomonas with water 2 or 3 times resulted in the loss of most of their free phosphate. When a small aliquot of NaHC14O3 was added to washed algae in the absence of this buffering capacity, the pH of the algal medium became 8 or above and much of the fixed C14 accumulated in glycolate.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. TANNER H. A., BROWN T. E., EYSTER C., TREHARNE R. W. A manganese dependent photosynthetic process. Biochem Biophys Res Commun. 1960 Aug;3:205–210. doi: 10.1016/0006-291x(60)90224-2. [DOI] [PubMed] [Google Scholar]
  2. TOLBERT N. E., ZILL L. P. Excretion of glycolic acid by algae during photosynthesis. J Biol Chem. 1956 Oct;222(2):895–906. [PubMed] [Google Scholar]
  3. WARBURG O., KRIPPAHL G. [Glycolic acid formation in Chlorella]. Z Naturforsch B. 1960 Mar;15B:197–199. [PubMed] [Google Scholar]
  4. ZELITCH I. THE RELATION OF GLYCOLIC ACID SYNTHESIS TO THE PRIMARY PHOTOSYNTHETIC CARBOXYLATION REACTION IN LEAVES. J Biol Chem. 1965 May;240:1869–1876. [PubMed] [Google Scholar]
  5. Zelitch I., Walker D. A. The Role of Glycolic Acid Metabolism in Opening of Leaf Stomata. Plant Physiol. 1964 Sep;39(5):856–862. doi: 10.1104/pp.39.5.856. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES