Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Apr;41(4):585–588. doi: 10.1104/pp.41.4.585

Auxin Stimulation of Ethylene Evolution

F B Abeles 1
PMCID: PMC1086388  PMID: 16656291

Abstract

The stimulation of ethylene production from seedling tissue of Phascolus vulgaris, Helianthus annuus and Zea mays by growth regulators was inhibited by actinomycin D and puromycin and to a lesser extent by 2-thiouracil and p-fluorophenylalanine. It is concluded that the mechanism of action of growth regulators on the enhancement of ethylene production is the formation of enzymes involved in ethylene biogenesis.

Full text

PDF
585

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D. B., Ray P. M. Direct and Indirect Effects of Auxin on Cell Wall Synthesis in Oat Coleoptile Tissue. Plant Physiol. 1965 Mar;40(2):345–352. doi: 10.1104/pp.40.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FANG S. C., YU T. C. INFLUENCE OF AUXINS ON IN VITRO INCORPORATION OF GLYCINE-C14 IN PEA SHOOT PROTEINS. Plant Physiol. 1965 Mar;40:299–303. doi: 10.1104/pp.40.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANCKI R. I. The inhibition of plant virus multiplication in two host species by 2-thiouracil. Virology. 1962 May;17:1–8. doi: 10.1016/0042-6822(62)90075-2. [DOI] [PubMed] [Google Scholar]
  4. Hall W. C., Lane H. C. COMPOSITIONAL AND PHYSIOLOGICAL CHANGES ASSOCIATED WITH THE CHEMICAL DEFOLIATION OF COTTON. Plant Physiol. 1952 Oct;27(4):754–768. doi: 10.1104/pp.27.4.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Key J. L., Ingle J. REQUIREMENT FOR THE SYNTHESIS OF DNA-LIKE RNA FOR GROWTH OF EXCISED PLANT TISSUE. Proc Natl Acad Sci U S A. 1964 Dec;52(6):1382–1388. doi: 10.1073/pnas.52.6.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Key J. L. Ribonucleic Acid and Protein Synthesis as Essential Processes for Cell Elongation. Plant Physiol. 1964 May;39(3):365–370. doi: 10.1104/pp.39.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Key J. L., Shannon J. C. Enhancement by Auxin of Ribonucleic Acid Synthesis in Excised Soybean Hypocotyl Tissue. Plant Physiol. 1964 May;39(3):360–364. doi: 10.1104/pp.39.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MUNIER R., COHEN G. N. Incorporation d'analogues structuraux d'aminoacides dans les protéines bactériennes au cours de leur synthèse in vivo. Biochim Biophys Acta. 1959 Feb;31(2):378–391. doi: 10.1016/0006-3002(59)90011-3. [DOI] [PubMed] [Google Scholar]
  9. Noodén L. D., Thimann K. V. Inhibition of protein synthesis and of auxin-induced growth by chloramphenicol. Plant Physiol. 1965 Jan;40(1):193–201. doi: 10.1104/pp.40.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paleg L. G. Physiological effects of gibberellic acid. III. Observations on its mode of action on barley endosperm. Plant Physiol. 1961 Nov;36(6):829–837. doi: 10.1104/pp.36.6.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ray P. M., Baker D. B. The Effect of Auxin on Synthesis of Oat Coleoptile Cell Wall Constituents. Plant Physiol. 1965 Mar;40(2):353–360. doi: 10.1104/pp.40.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES