Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Apr;41(4):653–660. doi: 10.1104/pp.41.4.653

Metabolism of Red Beet Slices I. Effects of Washing 1

D J Reed 1,2,2, P E Kolattukudy 1,2,3
PMCID: PMC1086401  PMID: 16656302

Abstract

The changes in relative participation of pathways of glucose catabolism in red beet slices during washing have been examined using specifically 14C labeled glucoses. Washing of these slices brings about an increase in participation of the pentose phosphate pathway. The composition of the washing medium influences slightly the extent of change in pathway participation. The activity level of certain enzymes participating in the initial stages of glucose catabolism has been measured in fresh and washed beet slices. Fresh slices which barely metabolized gluconate were found to have very little 6-phosphogluconate dehydrogenase activity. Washing brings about a dramatic increase in 6-phosphogluconate dehydrogenase activity and this increase was accompanied by a marked increase in the ability of the slices to metabolize gluconate. In red beet slices the TPNH generated via pentose phosphate pathway appears to be utilized for biosynthetic reductions rather than as respiratory substrate.

Full text

PDF
653

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BACON J. S., MACDONALD I. R., KNIGHT A. H. THE DEVELOPMENT OF INVERTASE ACTIVITY IN SLICES OF THE ROOT OF BETA VULGARIS L. WASHED UNDER ASEPTIC CONDITIONS. Biochem J. 1965 Jan;94:175–182. doi: 10.1042/bj0940175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUTT V. S., BEEVERS H. The regulation of pathways of glucose catabolism in maize roots. Biochem J. 1961 Jul;80:21–27. doi: 10.1042/bj0800021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbour R. D., Buhler D. R., Wang C. H. Identification and Estimation of Catabolic Pathways of Glucose in Fruits. Plant Physiol. 1958 Nov;33(6):396–400. doi: 10.1104/pp.33.6.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bieleski R. L., Laties G. G. Turnover Rates of Phosphate Esters in Fresh and Aged Slices of Potato Tuber Tissue. Plant Physiol. 1963 Sep;38(5):586–594. doi: 10.1104/pp.38.5.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CLICK R. E., HACKETT D. P. THE ROLE OF PROTEIN AND NUCLEIC ACID SYNTHESIS IN THE DEVELOPMENT OF RESPIRATION IN POTATO TUBER SLICES. Proc Natl Acad Sci U S A. 1963 Aug;50:243–250. doi: 10.1073/pnas.50.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FOSTER D. W., BLOOM B. A comparative study of reduced di- and triphosphopyridine nucleotides in the intact cell. J Biol Chem. 1961 Sep;236:2548–2551. [PubMed] [Google Scholar]
  7. Hackett D. P., Haas D. W., Griffiths S. K., Niederpruem D. J. Studies on Development of Cyanide-resistant Respiration in Potato Tuber Slices. Plant Physiol. 1960 Jan;35(1):8–19. doi: 10.1104/pp.35.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Humphreys T. E., Dugger W. M. Use of Specifically Labeled Glucose and Gluconate in the Evaluation of Catabolic Pathways for Glucose in Corn Roots. Plant Physiol. 1959 Sep;34(5):580–582. doi: 10.1104/pp.34.5.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rees T. A., Beevers H. Pentose Phosphate Pathway as a Major Component of Induced Respiration of Carrot and Potato Slices. Plant Physiol. 1960 Nov;35(6):839–847. doi: 10.1104/pp.35.6.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Romberger J. A., Norton G. Changing respiratory pathways in potato tuber slices. Plant Physiol. 1961 Jan;36(1):20–29. doi: 10.1104/pp.36.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES