Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 May;41(5):856–862. doi: 10.1104/pp.41.5.856

Reduction of the Gibberellin Content of Pharbitis Seeds by CCC and After-Effects in the Progeny 1

Jan A D Zeevaart 1,2
PMCID: PMC1086437  PMID: 16656331

Abstract

Plants of Pharbitis nil were treated with the growth retardant (2-chloroethyl) trimethylammonium chloride (CCC) shortly before and after anthesis. Fresh and dry weight of immature seeds were not affected by the CCC treatment.

The level of gibberellin-like activity in Pharbitis seeds as compared to control seeds was strongly reduced by CCC application. The progenies of the treated plants also had a much reduced GA content in the seedling stage. These results are interpreted to indicate that CCC blocks gibberellin biosynthesis in higher plants, as it does in the fungus Fusarium.

CCC applied via the roots accumulated in the immature seeds and was carried over to the following generation. Consequently, growth of CCC progenies was dwarfed and flower formation inhibited. Both phenomena were overcome by application of gibberellin A3.

Three gibberellin-like substances (called fractions I, II, and III) were present in Pharbitis seeds and could be separated by thin-layer chromatography. All 3 fractions were also present in seeds treated with CCC. Fractions II and III were present in much higher quantities than fraction I. Both fractions II and III promoted growth of d5 corn but only fraction II was active in dwarf peas grown under red light.

Full text

PDF
856

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALDEV B., LANG A., AGATEP A. O. GIBBERELLIN PRODUCTION IN PEA SEEDS DEVELOPING IN EXCISED PODS: EFFECT OF GROWTH RETARDANT AMO-1618. Science. 1965 Jan 8;147(3654):155–157. doi: 10.1126/science.147.3654.155. [DOI] [PubMed] [Google Scholar]
  2. Bayzer H. Dünnschichtchromatographische Trennung quaternärer Ammoniumverbindungen auf Celluloseschichten. Experientia. 1964 Apr 15;20(4):233–233. doi: 10.1007/BF02135423. [DOI] [PubMed] [Google Scholar]
  3. GRAEBE J. E., DENNIS D. T., UPPER C. D., WEST C. A. BIOSYNTHESIS OF GIBBERELLINS. I. THE BIOSYNTHESIS OF (-)-KAUREN-19-OL, AND TRANS-GERANYLGERANIOL IN ENDOSPERM NUCELLUS OF ECHINOCYSTIS MACROCARPA GREENE. J Biol Chem. 1965 Apr;240:1847–1854. [PubMed] [Google Scholar]
  4. Harada H., Lang A. Effect of some (2-chloroethyl) trimethylammonium chloride analogs and other growth retardants on gibberellin biosynthesis in Fusarium moniliforme. Plant Physiol. 1965 Jan;40(1):176–183. doi: 10.1104/pp.40.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kende H., Lang A. Gibberellins and Light Inhibition of Stem Growth in Peas. Plant Physiol. 1964 May;39(3):435–440. doi: 10.1104/pp.39.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SEMBDNER G., GROSS R., SCHREIBER K. [Thin layer chromatography of gibberellins]. Experientia. 1962 Dec 15;18:584–585. doi: 10.1007/BF02172196. [DOI] [PubMed] [Google Scholar]
  7. Zeevaart J. A. Effects of the Growth Retardant CCC on Floral Initiation and Growth in Pharbitis nil. Plant Physiol. 1964 May;39(3):402–408. doi: 10.1104/pp.39.3.402. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES