Abstract
The time-course of translocation of 14C from the blades of the sugarcane plant was investigated by analysis and radioactive counting of successive samples punched from a single blade. In 1 experiment, the time-course was studied by determining the specific activity of the carbon dioxide respired by the roots.
The rate of translocation, expressed as percentage, was highest immediately after the application of the radioactive carbon dioxide. Morning-made photosynthate translocated a higher percentage during the morning than during the afternoon in 90-minute periods in the light. Afternoon-made photosynthate translocated as well or better than morning-made photosynthate for the first hour in the light.
The leaf-disk data and the specific activity of the carbon dioxide respired by the roots corresponded by showing lower rates of translocation by night than by day for several successive days. Also, the translocation of 12C sucrose was slower at night.
The 14C sucrose translocated by day was made primarily by photosynthesis; the sucrose translocated by night was made primarily by the conversion of other labeled compounds, e.g. organic acids, organic phosphates, and insoluble residue.
The radioactive constituent of the residue, which was converted to sucrose, was tentatively identified as a glucose-xylose-glucuronic acid hemicellulose, with most or all of the 14C in the glucose moiety.
Translocation of sucrose may be triggered by different mechanisms during the night than the day. The conversion of insoluble residue to sucrose by increasing the osmotic potential at the source would favor a pressure-flow mechanism for nocturnal translocation; whereas translocation by day is thought to be a process of phototranslocation, a photoactivation of the translocation mechanism.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Geiger D. R., Swanson C. A. Evaluation of Selected Parameters in a Sugar Beet Translocation System. Plant Physiol. 1965 Sep;40(5):942–947. doi: 10.1104/pp.40.5.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger D. R., Swanson C. A. Sucrose Translocation in the Sugar Beet. Plant Physiol. 1965 Jul;40(4):685–690. doi: 10.1104/pp.40.4.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartt C. E., Kortschak H. P., Burr G. O. Effects of Defoliation, Deradication, and Darkening the Blade upon Translocation of C in Sugarcane. Plant Physiol. 1964 Jan;39(1):15–22. doi: 10.1104/pp.39.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartt C. E., Kortschak H. P., Forbes A. J., Burr G. O. Translocation of C in Sugarcane. Plant Physiol. 1963 May;38(3):305–318. doi: 10.1104/pp.38.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartt C. E., Kortschak H. P. Sugar Gradients and Translocation of Sucrose in Detached Blades of Sugarcane. Plant Physiol. 1964 May;39(3):460–474. doi: 10.1104/pp.39.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartt C. E. Light and Translocation of C in Detached Blades of Sugarcane. Plant Physiol. 1965 Jul;40(4):718–724. doi: 10.1104/pp.40.4.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartt C. E. The Effect of Temperature upon Translocation of C in Sugarcane. Plant Physiol. 1965 Jan;40(1):74–81. doi: 10.1104/pp.40.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartt C. E. Translocation in colored light. Plant Physiol. 1966 Mar;41(3):369–372. doi: 10.1104/pp.41.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatch M. D., Slack C. R. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J. 1966 Oct;101(1):103–111. doi: 10.1042/bj1010103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kortschak H. P., Hartt C. E., Burr G. O. Carbon Dioxide Fixation in Sugarcane Leaves. Plant Physiol. 1965 Mar;40(2):209–213. doi: 10.1104/pp.40.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]