Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1967 Apr;42(4):578–584. doi: 10.1104/pp.42.4.578

Distribution of an Indoleacetic Acid-oxidase-inhibitor in the Storage Root of Daucus carota 1

B S Jacobson 1,2, S M Caplin 1
PMCID: PMC1086585  PMID: 16656541

Abstract

Indoleacetic acid (IAA)-oxidase from both secondary phloem and xylem was dependent on 2,4-dichlorophenol for activity, and was enhanced by addition of Mn2+. The pH optimum was 6.0 from both tissues. IAA-oxidase and its inhibitors were distributed differently in the secondary phloem and secondary xylem of carrot root. In the phloem a high IAA-oxidase activity was distributed uniformly along the radius but in the xylem a somewhat lower concentration decreased from the cambium. IAA-oxidase inhibitor in the phloem increased exponentially from a very low concentration near the cambium, whereas in the xylem an appreciable concentration was present near the cambium, decreasing linearly with distance from the cambium. Longitudinal gradients in the xylem parallel studies by other workers with the greatest IAA-destroying capacity present in older tissues. In the xylem inhibitor decreased and IAA-oxidase increased from the root apex. In the phloem IAA-oxidase was uniform, whereas the inhibitor increased in older tissue.

The IAA-oxidase inhibitors in phloem and xylem may be different. In the xylem the IAA-oxidase inhibitor may be a lignin precursor present in young cells which disappears as lignification proceeds. In the phloem IAA-oxidase reacting with endogenous IAA appears to form a physiologically active product.

Full text

PDF
578

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carell E. F., Price C. A. Porphyrins and the iron requirement for chlorophyll formation in Euglena. Plant Physiol. 1965 Jan;40(1):1–7. doi: 10.1104/pp.40.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GORTNER W. A., KENT M. J. The coenzyme requirement and enzyme inhibitors of pineapple indoleacetic acid oxidase. J Biol Chem. 1958 Sep;233(3):731–735. [PubMed] [Google Scholar]
  3. KENTEN R. H. The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. Biochem J. 1955 Jan;59(1):110–121. doi: 10.1042/bj0590110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. Morgan P. W. Distribution of Indoleacetic Acid Oxidase and Inhibitors in Light-Grown Cotton. Plant Physiol. 1964 Sep;39(5):741–746. doi: 10.1104/pp.39.5.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Morgan P. W., Hall W. C. Indoleacetic Acid Oxidizing Enzyme & Inhibitors from Light-Grown Cotton. Plant Physiol. 1963 Jul;38(4):365–370. doi: 10.1104/pp.38.4.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Siegei S., Frost P., Porto F. Effects of Indoleacetic Acid and Other Oxidation Regulators on in Vitro Peroxidation and Experimental Conversion of Eugenol to Lignin. Plant Physiol. 1960 Mar;35(2):163–167. doi: 10.1104/pp.35.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Stafford H. A. Differences Between Lignin-like Polymers Formed by Peroxidation of Eugenol and Ferulic Acid in Leaf Sections of Phleum. Plant Physiol. 1960 Jan;35(1):108–114. doi: 10.1104/pp.35.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tuli V., Moyed H. S. Desensitization of regulatory enzymes by a metabolite of plant auxin. J Biol Chem. 1966 Oct 10;241(19):4564–4566. [PubMed] [Google Scholar]
  10. WAGENKNECHT A. C., BURRIS R. H. Indoleacetic acid inactivating enzymes from bean roots and pea seedlings. Arch Biochem. 1950 Jan;25(1):30–53. [PubMed] [Google Scholar]
  11. YAMAZAKI I., PIETTE L. H. THE MECHANISM OF AEROBIC OXIDASE REACTION CATALYZED BY PEROXIDASE. Biochim Biophys Acta. 1963 Sep 3;77:47–64. doi: 10.1016/0006-3002(63)90468-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES