Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1967 Sep;42(9):1197–1201. doi: 10.1104/pp.42.9.1197

Compartmentation of Organic Acids in Corn Roots. III. Utilization of Exogenously Supplied Acids 1

B T Steer 1,2, Harry Beevers 1
PMCID: PMC1086702  PMID: 16656640

Abstract

The rates of utilization of exogenously supplied 14C labeled acids by corn roots was compared to the utilization of these acids generated endogenously in the mitochondria from acetate-3H. 14C-labeled citrate, pyruvate, succinate, glutamate or aspartate were supplied with acetate-3H in a 15 minute pulse and the 14C and 3H contents of extracted acids were measured over a 4 hour period. It was found, in contrast to previous experiments with malate, that these exogenously added acids were used as rapidly as the endogenous forms. Apparently, therefore, these acids penetrate readily into the mitochondria and do not enter cytoplasmic pools which are not in ready equilibrium with those in the mitochondria. Small amounts of labeled glutamate were produced from succinate-2,3-3H by corn root tissue. Since glutamate would not be expected to be labeled by reactions of the tricarboxylic acid cycle it was concluded that it was produced rather directly from succinate. The minor pool of glutamate generated in this way retained its radioactivity while that generated in the cycle was rapidly lost. An extra-mitochondrial location of this pool of glutamate is therefore suggested.

Full text

PDF
1197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CANVIN D. T., BEEVERS H. Sucrose synthesis from acetate in the germinating castor bean: kinetics and pathway. J Biol Chem. 1961 Apr;236:988–995. [PubMed] [Google Scholar]
  2. Childress C. C., Sacktor B. Pyruvate oxidation and the permeability of mitochondria from blowfly flight muscle. Science. 1966 Oct 14;154(3746):268–270. doi: 10.1126/science.154.3746.268. [DOI] [PubMed] [Google Scholar]
  3. Lips S. H., Beevers H. Compartmentation of Organic Acids in Corn Roots II. The Cytoplasmic Pool of Malic Acid. Plant Physiol. 1966 Apr;41(4):713–717. doi: 10.1104/pp.41.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lips S. H., Beevers H. Compartmentation of organic acids in corn roots I. Differential labeling of 2 malate pools. Plant Physiol. 1966 Apr;41(4):709–712. doi: 10.1104/pp.41.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lips S. H., Steer B. T., Beevers H. Metabolism of corn roots in malonate. Plant Physiol. 1966 Sep;41(7):1135–1138. doi: 10.1104/pp.41.7.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Maclennan D. H., Beevers H., Harley J. L. 'Compartmentation' of acids in plant tissues. Biochem J. 1963 Nov;89(2):316–327. doi: 10.1042/bj0890316. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES