Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1967 Oct;42(10):1407–1412. doi: 10.1104/pp.42.10.1407

Effects of Temperature on Orthophosphate Absorption by Excised Corn Roots 1

O G Carter 1,2, D J Lathwell 1
PMCID: PMC1086738  PMID: 16656670

Abstract

The uptake of orthophosphate (32P) by excised corn roots, Zea mays L. was studied using roots grown on 0.2 mm CaSO4. Nine concentrations of KH2PO4 from 1 to 256 μm were used at temperatures of 20°, 30°, and 40°. Enzyme kinetic analysis was applied to the data obtained. Two apparent mechanisms (sites) of phosphate uptake were observed, 1 dominating at high P concentrations and 1 at low P concentrations. A Km of 1.36 × 10−4 and a Vmax of 177 × 10−9 moles per gram of roots per hour at 30° was calculated for the mechanism dominating at high P concentrations. Similar calculations gave a Km of 6.09 × 10−6 and a Vmax of 162 × 10−9 moles per gram of roots per hour at 30° for the mechanism dominating at low P concentrations. The Q10 for both mechanisms was approximately 2. Calculation of thermodynamic values from the data gave ΔF of − 5200 cal, ΔH of − 950 to − 1400 cal, and a enthalpy of activation (A) of 10,300 to 13,800 cal per mole for the mechanism dominating at high P concentrations. Similar calculations from the data for the mechanism dominating at low P concentrations gave a ΔF of − 7300 cal, ΔH of − 10,700 to − 8200 cal, and a A of 9300 to 18,900 cal per mole. If the dual mechanism interpretation of this kind of data adequately describes this system, then both mechanisms of P absorption by corn roots involve chemical reactions.

Full text

PDF
1407

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Epstein E., Rains D. W., Schmid W. E. Course of Cation Absorption by Plant Tissue. Science. 1962 Jun 22;136(3521):1051–1052. doi: 10.1126/science.136.3521.1051. [DOI] [PubMed] [Google Scholar]
  2. HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
  3. Hagen C. E., Hopkins H. T. Ionic Species in Orthophosphate Absorption by Barley Roots. Plant Physiol. 1955 May;30(3):193–199. doi: 10.1104/pp.30.3.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hagen C. E., Leggett J. E., Jackson P. C. THE SITES OF ORTHOPHOSPHATE UPTAKE BY BARLEY ROOTS. Proc Natl Acad Sci U S A. 1957 Jun 15;43(6):496–506. doi: 10.1073/pnas.43.6.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Leggett J. E., Galloway R. A., Gauch H. G. Calcium Activation of Orthophosphate Absorption by Barley Roots. Plant Physiol. 1965 Sep;40(5):897–902. doi: 10.1104/pp.40.5.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Torii K., Laties G. G. Dual mechanisms of ion uptake in relation to vacuolation in corn roots. Plant Physiol. 1966 May;41(5):863–870. doi: 10.1104/pp.41.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES