Skip to main content
. 2024 Jan 18;27(2):108965. doi: 10.1016/j.isci.2024.108965

Table 2.

Comparison of different modeling techniques for per-participant normalized VAS fatigue ratings

Model No mean imp.
Mean imp.
R%2 MAE RMSE R%2 MAE RMSE
RF 26.1 0.69 0.86 24.0 0.71 0.89
BTE 26.0 0.69 0.86 23.6 0.71 0.89
SVM 25.8 0.68 0.85 24.6 0.70 0.88
NN 24.4 0.71 0.88 23.1 0.72 0.90
GAM 26.2 0.69 0.85 24.2 0.70 0.88
GLM 25.9 0.68 0.84 24.0 0.70 0.88

For all participants, we compare the performance of a GAM to a random forest (RF),25 a boosted tree ensemble (BTE),26 a linear support vector machine (SVM),27 and a neural network (NN).28 We evaluate all techniques when removing all data points with missing values (No mean imp.) and imputing each missing value by the mean feature value per participant (Mean imp.). Details in the STAR Methods section.