Table 2.
Model | No mean imp. |
Mean imp. |
||||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |||
RF | 26.1 | 0.69 | 0.86 | 24.0 | 0.71 | 0.89 |
BTE | 26.0 | 0.69 | 0.86 | 23.6 | 0.71 | 0.89 |
SVM | 25.8 | 0.68 | 0.85 | 24.6 | 0.70 | 0.88 |
NN | 24.4 | 0.71 | 0.88 | 23.1 | 0.72 | 0.90 |
GAM | 26.2 | 0.69 | 0.85 | 24.2 | 0.70 | 0.88 |
GLM | 25.9 | 0.68 | 0.84 | 24.0 | 0.70 | 0.88 |
For all participants, we compare the performance of a GAM to a random forest (RF),25 a boosted tree ensemble (BTE),26 a linear support vector machine (SVM),27 and a neural network (NN).28 We evaluate all techniques when removing all data points with missing values (No mean imp.) and imputing each missing value by the mean feature value per participant (Mean imp.). Details in the STAR Methods section.