Abstract
The free fatty acid content of spinach chloroplasts, isolated at pH 5.8 to 8.0, has been found to vary between 3.1 and 5.5% of the total chloroplast fatty acids. When chloroplasts were incubated at room temperature for 2 hours, the free fatty acids increased by 42% and the Hill activity decreased by 70%. After 2 hours of incubation at 37°, the free fatty acids increased about 3-fold and the Hill activity decreased to almost 0. The addition of crystalline bovine serum albumin largely prevented the loss of Hill activity at room temperature and at 5°, but had little effect during incubation at 37°. Both the release of free fatty acids and the loss of Hill activity were pH dependent. The losses were the least during incubation at pH 5.8 and the greatest during incubation at pH 8.0. The major free fatty acids released at pH 5.8 were saturated, while those released at pH 7.0 or 8.0 were mainly the unsaturated acids, α-linolenic acid and hexadecatrienoic acid.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bamberger E. S., Park R. B. Effect of hydrolytic enzymes on the photosynthetic efficiency and morphology of chloroplasts. Plant Physiol. 1966 Dec;41(10):1591–1600. doi: 10.1104/pp.41.10.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- GOLDFINE H., BLOCH K. On the origin of unsaturated fatty acids in clostridia. J Biol Chem. 1961 Oct;236:2596–2601. [PubMed] [Google Scholar]
- JAGENDORF A. T., AVRON M. Cofactors and rates of photosynthetic phosphorylation by spinach chloroplasts. J Biol Chem. 1958 Mar;231(1):277–290. [PubMed] [Google Scholar]
- Knivett V. A., Cullen J. Some factors affecting cyclopropane acid formation in Escherichia coli. Biochem J. 1965 Sep;96(3):771–776. doi: 10.1042/bj0960771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarty R. E., Jagendorf A. T. Chloroplast damage due to enzymatic hydrolysis of endogenous lipids. Plant Physiol. 1965 Jul;40(4):725–735. doi: 10.1104/pp.40.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molotkovsky Y. G., Zheskova I. M. The influence of heating on the morphology and photochemical activity of isolated chloroplasts. Biochem Biophys Res Commun. 1965 Aug 16;20(4):411–415. doi: 10.1016/0006-291x(65)90592-9. [DOI] [PubMed] [Google Scholar]
- PARK R. B., PON N. G. Correlation of structure with function in Spinacea oleracea chloroplasts. J Mol Biol. 1961 Feb;3:1–10. doi: 10.1016/s0022-2836(61)80002-8. [DOI] [PubMed] [Google Scholar]
- Pedersen T. A., Kirk M., Bassham J. A. Inhibition of photophosphorylation and photosynthetic carbon cycle reactions by fatty acids and esters. Biochim Biophys Acta. 1966 Feb 7;112(2):189–203. doi: 10.1016/0926-6585(66)90320-7. [DOI] [PubMed] [Google Scholar]
- SASTRY P. S., KATES M. HYDROLYSIS OF MONOGALACTOSYL AND DIGALACTOSYL DIGLYCERIDES BY SPECIFIC ENZYMES IN RUNNER-BEAN LEAVES. Biochemistry. 1964 Sep;3:1280–1287. doi: 10.1021/bi00897a016. [DOI] [PubMed] [Google Scholar]
- WEISS S. B., KENNEDY E. P., KIYASU J. Y. The enzymatic synthesis of triglycerides. J Biol Chem. 1960 Jan;235:40–44. [PubMed] [Google Scholar]