Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1968 Oct;43(10):1597–1604. doi: 10.1104/pp.43.10.1597

Oxygen Evolution and the Permeability of the Outer Envelope of Isolated Whole Chloroplasts 1

J Michael Robinson 1, C R Stocking 1
PMCID: PMC1087047  PMID: 16656943

Abstract

A rapid oxygraph method of studying the permeability of the envelope of isolated chloroplasts was used. The outer envelope of aqueously isolated whole spinach (Spinacia oleracea L.) chloroplasts in buffer is readily permeable to 3-phosphoglyceric acid, which induces an immediate light dependent oxygen evolution. This light dependent oxygen evolution was completely eliminated by swelling these plastids in an osmotically dilute solution. Exogenous adenosine diphosphate, but not inorganic phosphate, strongly stimulated this oxygen evolution. This indicated that the chloroplast envelope is relatively permeable to adenosine diphosphate.

Oxygen evolution and swelling studies indicated that the chloroplast envelope is relatively impermeable to NADP and to ferredoxin.

A method is described whereby the percent of whole chloroplasts present in a chloroplast preparation may be rapidly estimated.

Full text

PDF
1597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnon D. I. Ferredoxin and photosynthesis. Science. 1965 Sep 24;149(3691):1460–1470. doi: 10.1126/science.149.3691.1460. [DOI] [PubMed] [Google Scholar]
  3. Baldry C. W., Walker D. A., Bucke C. Calvin-cycle intermediates in relation to induction phenomena in photosynthetic carbon dioxide fixation by isolated chloroplasts. Biochem J. 1966 Dec;101(3):642–646. doi: 10.1042/bj1010642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bamberger E. S., Gibbs M. Effect of Phosphorylated Compounds and Inhibitors on CO(2) Fixation by Intact Spinach Chloroplasts. Plant Physiol. 1965 Sep;40(5):919–926. doi: 10.1104/pp.40.5.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bassham J. A., Kirk M., Jensen R. G. Photosynthesis by isolated chloroplasts. I. Diffusion of labeled photosynthetic intermediates between isolated chloroplasts and suspending medium. Biochim Biophys Acta. 1968 Jan 15;153(1):211–218. doi: 10.1016/0005-2728(68)90162-x. [DOI] [PubMed] [Google Scholar]
  6. Bucke C., Walker D. A., Baldry C. W. Some effects of sugars and sugar phosphates on carbon dioxide fixation by isolated chloroplasts. Biochem J. 1966 Dec;101(3):636–641. doi: 10.1042/bj1010636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gee R., Writer S., Saltman P. Chloroplast Integrity and Biochemical Function. Plant Physiol. 1965 Nov;40(6):1101–1108. doi: 10.1104/pp.40.6.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HEBER U., WILLENBRINK J. SITES OF SYNTHESIS AND TRANSPORT OF PHOTOSYNTHETIC PRODUCTS WITHIN THE LEAF CELL. Biochim Biophys Acta. 1964 Feb 10;82:313–324. doi: 10.1016/0304-4165(64)90302-2. [DOI] [PubMed] [Google Scholar]
  9. Heber U. W., Santarius K. A. Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim Biophys Acta. 1965 Nov 29;109(2):390–408. doi: 10.1016/0926-6585(65)90166-4. [DOI] [PubMed] [Google Scholar]
  10. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson E. J., Bruff B. S. Chloroplast Integrity and ATP-Dependent CO(2) Fixation in Spinacia oleracea. Plant Physiol. 1967 Oct;42(10):1321–1328. doi: 10.1104/pp.42.10.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KEARNEY P. C., TOLBERT N. E. Appearance of glycolate and related products of photosynthesis outside of chloroplasts. Arch Biochem Biophys. 1962 Jul;98:164–171. doi: 10.1016/0003-9861(62)90162-5. [DOI] [PubMed] [Google Scholar]
  13. LEECH R. M. THE ISOLATION OF STRUCTURALLY INTACT CHLOROPLASTS. Biochim Biophys Acta. 1964 May 25;79:637–639. doi: 10.1016/0926-6577(64)90235-9. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Ongun A., Stocking C. R. Effect of Light and Dark on the Intracellular Fate of Photosynthetic Products. Plant Physiol. 1965 Sep;40(5):825–831. doi: 10.1104/pp.40.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ongun A., Stocking C. R. Effect of Light on the Incorporation of Serine into the Carbohydrates of Chloroplasts and Nonchloroplast Fractions of Tobacco Leaves. Plant Physiol. 1965 Sep;40(5):819–824. doi: 10.1104/pp.40.5.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
  18. Santarius K. A., Heber U. Changes in the intracellular levels of ATP, ADP, AMP and P1 and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim Biophys Acta. 1965 May 25;102(1):39–54. doi: 10.1016/0926-6585(65)90201-3. [DOI] [PubMed] [Google Scholar]
  19. Still C. C., Price C. A. Bulk separation of chloroplasts with intact membranes in the zonal centrifuge. Biochim Biophys Acta. 1967 Jun 13;141(1):176–178. doi: 10.1016/0304-4165(67)90257-7. [DOI] [PubMed] [Google Scholar]
  20. TAGAWA K., ARNON D. I. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 1962 Aug 11;195:537–543. doi: 10.1038/195537a0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES