Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1968 Nov;43(11):1855–1858. doi: 10.1104/pp.43.11.1855

Control of Senescence in Rumex Leaf Discs by Gibberellic Acid 1

Jonathan J Goldthwaite 1,2, W M Laetsch 1
PMCID: PMC1087089  PMID: 16656979

Abstract

The kinetics of chlorophyll and protein decomposition and the effect of gibberellic acid (GA) were examined in senescing leaf discs of Rumex crispus and R. obtusifolius. Loss of Rumex total chlorophyll proceeds at a slow rate for about 2 days followed by a period of rapid logarithmic decline. Chlorophyll b is lost at a slightly faster rate than chlorophyll a during senescence in discs as well as in situ. GA causes a complete cessation of net chlorophyll and protein degradation for several days in Rumex, in contrast to the incomplete senescence inhibition generally observed with cytokinins. GA is fully effective even when added at the middle of the logarithmic phase of chlorophyll loss. Senescence inhibition by GA is apparently gradually reversed upon GA removal. The cytokinins, kinetin and 6-benzylaminopurine, were also effective in Rumex leaf discs, indicating that the senescence retarding effect was not restricted to the gibberellins.

Full text

PDF
1855

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Goldthwaite J. J., Laetsch W. M. Regulation of senescence in bean leaf discs by light and chemical growth regulators. Plant Physiol. 1967 Dec;42(12):1757–1762. doi: 10.1104/pp.42.12.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Osborne D. J. Effect of Kinetin on Protein & Nucleic Acid Metabolism in Xanthium Leaves During Senescence. Plant Physiol. 1962 Sep;37(5):595–602. doi: 10.1104/pp.37.5.595. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES